
 

 

NAVAL 
POSTGRADUATE 

SCHOOL 
 
 

MONTEREY, CALIFORNIA 
 
 
 

DISSERTATION 
 

Approved for public release; distribution is unlimited. 

USE OF STATECHART ASSERTIONS FOR MODELING 
HUMAN-IN-THE-LOOP SECURITY ANALYSIS AND 

DECISION-MAKING PROCESSES 
 

by 
 

Michael A. Schumann 
 

June 2012 
 

Dissertation Supervisor: James Bret Michael 



 

THIS PAGE INTENTIONALLY LEFT BLANK



i 

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for 
reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and 
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information 
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA22202-4302, and to the Office of 
Management and Budget, Paperwork Reduction Project (0704-0188) WashingtonDC20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE 
June 2012 

3. REPORT TYPE AND DATES COVERED 
Dissertation 

4. TITLE AND SUBTITLE:  Use of Statechart Assertions for Modeling Human-in-
the-Loop Security Analysis and Decision-Making Processes 

5. FUNDING NUMBERS 
 

6. AUTHOR:  CDR Michael Schumann 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Naval Postgraduate School 
Monterey, CA93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING / MONITORING 
  AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES:  The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ______N/A________. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT: 
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 
A 

13. ABSTRACT (maximum 200 words): 

Processes are a fundamental component of most activities undertaken by humans. In software engineering and 
information assurance, in particular, it is important that processes be understandable, documented, and repeatable 
so as to ensure that the process outcomes are consistent and predictable.  This dissertation provides a novel 
approach to process creation, documentation, checking, and maintenance that applies mathematical formalism to 
the engineering of processes that rely in large measure on human decision-making to advance the process flow.  
However, the modeling approach is sufficiently general for application to any process.  This dissertation advances 
the state-of-the-art in software engineering by providing a formal computer-assisted end-to-end way to conduct 
requirements engineering.  This dissertation advances the state-of-the-art in information assurance by developing a 
systematic approach that makes the creation of security processes precise and uses formal methods to allow 
upfront validation and runtime verification of modeled processes.  This dissertation demonstrates the modeling 
approach through a case study of the Unified Cross Domain Management Office’s Cross Domain Solution 
Workflow process. 
 
14. SUBJECT TERMS: Software Engineering, Information Assurance, Process Modeling, Statechart 
Assertions, Formal Methods, Certification and Accreditation 

15. NUMBER OF 
PAGES 

160 
16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 
 

UU 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



ii 

THIS PAGE INTENTIONALLY LEFT BLANK 



iii 

Approved for public release; distribution is unlimited. 
 

USE OF STATECHART ASSERTIONS FOR MODELING HUMAN-IN-THE-
LOOP SECURITY ANALYSIS AND DECISION-MAKING PROCESSES 

 
Michael A. Schumann 

Commander, United States Navy 
B.A., Washington State University, 1991 
M.S., Naval Postgraduate School, 2002 

 
Submitted in partial fulfillment of the 

requirements for the degree of 
 

DOCTOR OF PHILOSOPHY IN SOFTWARE ENGINEERING 
 

from the 
 

NAVAL POSTGRADUATE SCHOOL 
June 2012 

 
 

Author: __________________________________________________ 
Michael A. Schumann 

 
Approved by:  

______________________ ______________________ 
James Bret Michael Dan C. Boger 
Professor of Computer Science Professor and Chair of 
Dissertation Supervisor Information Sciences  
 
______________________ _______________________ 
George Dinolt Doron Drusinsky 
Professor of Practice Associate Professor of 
 Computer Science 
______________________  
Duminda Wijesekera 
Professor of Computer Science, 
George Mason University 

 
Approved by: __________________________________________________ 
 Peter J. Denning, Professor & Chair, Department of Computer Science 

 
Approved by: __________________________________________________ 
 Douglas Moses, Associate Provost for Academic Affairs 
 



iv 

THIS PAGE INTENTIONALLY LEFT BLANK 



v 

ABSTRACT 

Processes are a fundamental component of most activities undertaken by humans. In 

software engineering and information assurance, in particular, it is important that 

processes be understandable, documented, and repeatable so as to ensure that the process 

outcomes are consistent and predictable.  This dissertation provides a novel approach to 

process creation, documentation, checking, and maintenance that applies mathematical 

formalism to the engineering of processes that rely in large measure on human decision-

making to advance the process flow.  However, the modeling approach is sufficiently 

general for application to any process.  This dissertation advances the state-of-the-art in 

software engineering by providing a formal computer-assisted end-to-end way to conduct 

requirements engineering.  This dissertation advances the state-of-the-art in information 

assurance by developing a systematic approach that makes the creation of security 

processes precise and uses formal methods to allow upfront validation and runtime 

verification of modeled processes.  This dissertation demonstrates the modeling approach 

through a case study of the Unified Cross Domain Management Office’s Cross Domain 

Solution Workflow process. 
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I. INTRODUCTION 

A. STATEMENT OF THE PROBLEM 

Processes are a fundamental component of most activities undertaken by humans.  

According to Webster’s New Universal Unabridged Dictionary, a process is “a particular 

method of doing something, generally involving a number of steps or operations” 

(Webster and Mckechnie 1983).  In software engineering and information assurance, in 

particular, it is important that processes be understandable, documented, and repeatable 

so as to ensure that the process outcomes are consistent and predictable.  The ability to 

formally represent and reason about human-based decision-making processes is a 

prerequisite for implementing these processes in information systems. 

Our research presents a novel approach to process creation, documentation, 

checking, and maintenance.  Our statechart assertion-based approach applies 

mathematical formalism to the engineering of processes.  We focus on human-based 

processes, that is, processes that rely in large measure on human decision-making to 

advance the process flow; however, this modeling approach is sufficiently general for 

application to any process. 

Our approach utilizes statechart-based formal process modeling as well as the use 

of embedded statechart assertions to ensure that modeled process adheres to stated 

requirements, thus providing traceability1 between the process requirements and the 

process implementation.  The formal nature of our approach can also help the process 

engineer to reason about the process.  We apply formal methods-based tools and 

techniques in our approach.  As Monin points out, formal methods provide us with a 

precise and unambiguous means of specifying and reasoning about the behavior of 

systems (Monin and Hinchey 2003).  Formal methods are most frequently used in the 

software engineering of highly automated security- and safety-critical systems.  However, 

our research demonstrates the use of formal methods to specify and reason about 
                                                 

1 We apply the IEEE 610.12-1990 definition of traceability stated as, “The degree to which each 
element in a software development product establishes its reason for existing; for example, the degree to 
which each element in a bubble chart references the requirement it satisfies.” 



 2 

primarily human-based processes, such as the process used by the U.S. government to 

implement, certify, and accredit cross domain solutions (CDS).  This process is titled the 

CDS Workflow and serves as a demonstrative exemplar of our modeling approach.   

The intent of our approach is to impart a high degree of precision to our 

understanding of the process, as well as to provide an automated means of validating that 

the process does what we expect it to do.  In addition, our approach provides for runtime 

monitoring of the process in execution.  Runtime monitoring is useful for both validation 

which is about answering the question, “Is our formal specification of the natural 

language description of the process correct?” as well as verification which is about 

answering the question, “Have we correctly implemented the process?”  Runtime 

monitoring is possible because one of the artifacts produced by our modeling approach is 

an executable representation of the process.  In essence, runtime monitoring uses an 

executable version of the process and assertions about the process to evaluate input 

scenarios and classify them as good or bad (Drusinsky 2006). 

We apply a particular technical solution, the TimeRover statechart-based 

modeling tool, to our exemplar process in order to demonstrate the technical feasibility of 

the approach. 

Not all processes require a fine-grain level of modeling, high level of fidelity, or 

formal specification.  For example, Netflix, Incorporated describes a process of rapid 

recovery from problems that directs employees to “just fix problems quickly” (Anon.).  

The philosophy behind this is that the company resides in a creative-inventive market 

where fixing problems is cheaper than preventing them vice a safety- or security-critical 

market where preventing problems is cheaper than fixing them (Hall 2005).  The 

company goes on to describe the difference between “good” and “bad” processes.  The 

“good” processes tend to be loosely defined (e.g., website push every two weeks rather 

than random) and would likely not benefit from the use of formal methods. 

In a number of arenas there is a need to seamlessly share and integrate 

information from multiple security domains via a ubiquitous sharing and arbitration 

mechanism—in systems that perform this function are defined as cross domain solutions 
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(Committee on National Security Systems 2006).  At the same time, we must have the 

evidence necessary to ensure the prevention of inadvertent disclosure of sensitive or 

classified information.  Prior to September 2008 the U.S. government had an established 

process for the certification and accreditation2 (C&A) of high-assurance systems as 

delineated in Director of Central Intelligence Directive (DCID) 6/3 Policy, “Protecting 

Sensitive Compartmented Information within Information Systems” (Committee on 

National Security Systems 2006).  The entire C&A process was reviewed and revised as 

delineated in the Intelligence Community Directive (ICD) 503, “Information Technology 

Systems Security Risk Management, Certification and Accreditation” and the associated 

documents within the ICD 503 Framework (see Figure 1) (Director of National 

Intelligence 2008). 

 

Figure 1. ICD 503 Framework 

                                                 
2 Where applicable, definitions for information assurance related terms will be as specified in the 

Committee on National Security Systems Instruction No. 4009, National Information Assurance Glossary.  
Accordingly, certification refers to the comprehensive evaluation of security safeguards to support the 
accreditation process.  Accreditation is the formal declaration that an information system is approved by a 
designated authority to operate at an acceptable level of risk. 
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The ICD 503 C&A process is embedded within the CDS Workflow process 

described above.  We must be able to understand and ensure the rigorous application of 

the ICD 503 C&A process for high-assurance systems.  In doing so, we help build the 

evidence necessary for operating these systems at the highest levels of assurance.  

Currently, there is no rigorously defined mathematical model of the C&A process.  Our 

modeling approach provides a means of building such a mathematically rigorous model.  

The ICD 503 C&A process is the product of a series of transitional working groups to 

reformulate and unify the U.S. Department of Defense (DoD) and Intelligence 

Community (IC) C&A processes.  The intent was to develop a single, federated process 

applicable to high-assurance information systems throughout the federal government.  

These working groups primarily consisted of domain experts in fields related to high-

assurance systems, such as: system certifiers and accreditors, high-assurance system 

vendors, and DOD and IC chief information officers.  The working groups used a 

combination of domain knowledge, tribal knowledge, best practices, and input from 

government information assurance (IA) and C&A communities, to develop the process 

(Niles 2002).  While this method can be an effective way of developing processes, in the 

domain of high-assurance system certification and accreditation, it is not enough. As 

Gabbar pointed out, formal representation provides a systematic framework to construct 

and validate the syntax of the underlying system towards building standard representation 

approaches (Gabbar 2006, 23).  Michael et al. show us that (see Figure 2) we can 

translate customer requirements to formal specification then employ validation and 

verification (V&V) throughout the development process in order to ensure that the model 

satisfies stakeholder expectations (Michael et al. 2011). 
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Figure 2. A Continuous V&V Process (From Michael et al. 2011) 

We have analyzed the CDS Workflow process in terms of our modeling approach 

and used the approach to develop a formal process model.  We do so using formal 

methods tools and techniques such as those described in (Drusinsky 2006; Gabbar 2006; 

Monin and Hinchey 2003).  The resultant model provides the level of formality necessary 

for rigorously applying the exemplar process.   

B. SIGNIFICANCE OF THE PROBLEM 

The significance of the problem is clear.  In order to understand fully a series of 

activities conducing to an end, especially when that end directly relates to the level of 

trust we place in high assurance systems, we must be able to rigorously articulate the 

process, consistently predict the process outcomes, and enforces requirements on the 

process.  In this section, we discuss the importance of formally modeling the CDS 

Workflow exemplar process as a means of demonstrating the significance of the problem. 

In order to implement, certify, and accredit systems for operation at the highest 

levels of assurance, we need to be able to both understand and trust in the process 

through which we implement, certify, and accredit those systems.  Ultimately, our work 

in defining a formal model of the CDS Workflow process helps build the evidence 

necessary to certify and accredit high-assurance CDS systems.  However, a well-defined, 

validated, and documented process is only enough to guarantee safety.  The reification 

(i.e., mapping) from the formal model to the implementation is also needed to guarantee 
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security properties.  In other words, validation and verification (V&V) of the process is a 

necessary but not sufficient condition for obtaining a trusted system. 

The Maritime Domain Awareness (MDA) research group at the Naval 

Postgraduate School (NPS) has partnered with numerous defense research and 

development (R & D) organizations to develop a prototype system (see Figure 3) called 

Radiant Alloy that is capable of fusing data from multiple security domains into a 

comprehensive picture of the Maritime Domain. 

 

Figure 3. Proposed System Architecture 

In the prototype system, data sources and clients may reside within any of the 

possible security domains (e.g., UNCLASS, SECRET, TOP SECRET).  Therefore, in 

order to prevent the inadvertent disclosure of classified data (i.e., information leakage), 

the application server depicted in Figure 3 must prevent the unintended transfer of data 

between security domains.  At the same time, it must allow authorized down/upgrading 

and transference of data in order to supply those on the client-side with the most 

comprehensive MDA situational awareness (SA) picture available based on the client’s 

level of access as demonstrated in Figure 4 below.  In addition, there must be a means for 

providing anonymity to the suppliers of the data contained in the repositories. 
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Figure 4. Access Restricted Based on Authorized Access Level of User 

Systems such as Radiant Alloy are critical to the future of MDA.  The United 

States and its allies and other groups requiring access to MDA information at a variety of 

levels need a fully developed, easily accessible, comprehensive picture of the maritime 

domain.  For example: the struggle against military and terrorist forces bent on attacking 

and destroying U.S. and allied forces, combating the illicit worldwide movement of 

human cargo (e.g., the slave trade and illegal immigration), and investigation and 

prevention of narcotics trafficking.  In order to realize this vision, information from all 

security domains must be accessible on an as-needed basis to those that require it and 

only within authorized security domains.  For example, in a scenario involving tracking 

and interdiction of a cargo ship suspected of carrying concealed weapons of mass 

destruction (WMD) or WMD components, numerous organizations participate in the 

effort.  These roles have different security levels and data requirements; yet, in order to 

work together they must be able to share data.  This effort would include numerous 

participants such as: port security guards enforcing entry point access controls, Coast 

Guard harbor patrol personnel in a law enforcement capacity, watch officers at one of the 

Coast Guard Regional Fusion Centers that deconflict and manage inbound shipping, ship-

refueling operators that routinely collect and analyze data on inbound shipping fuel 

levels, maritime patrol aircraft that contribute to maritime situational awareness, Naval 

carrier strike groups which routinely analyze the operating patterns of underway vessels, 

the U.S. State Department which understands normalized flow of trade between 

countries, non-governmental organizations (NGOs) that may have unique insights and 
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access to activity at ports of debarkation worldwide, and any other organization that may 

be able to contribute to the tracking and interdiction of the target vessel.  

The governance of high-assurance systems C&A has transitioned to a series of 

publications that fall within a proposed framework for ICD 503 shown in Figure 1.  ICD 

503 is a result of a shift in responsibility for the C&A of high-assurance systems from the 

Director of Central Intelligence (DCI) to the Director of National Intelligence (DNI).  

The Unified Cross Domain Management Office (UCDMO), under the auspices of the 

DNI, is responsible for creating, publishing, and maintaining ICD 503.  The intent of ICD 

503 is to combine current paths to C&A into a unified federal government-wide process.  

This is a major shift from today’s C&A environment where the process of C&A is 

dependent on the domain in which a system operates.  Furthermore, C&A via one system 

does not transfer or correlate to C&A via another.  For example, the Department of 

Defense uses DoD Instruction (DODI) 8500.2 to govern the C&A of information systems 

whereas the Intelligence Community (IC) uses DCID 6/3.  A cross domain solution fully 

certified under DODI 8500.2 would still need to go through the DCID 6/3 C&A process 

in order to be certified for use within the IC.  Under the rubric of ICD 503, a single C&A 

process will be used for all federal information systems.  

The ICD 503 framework establishes the authorities and structure for protecting 

national intelligence information and information systems, whether classified or 

unclassified (Director of National Intelligence 2008).  The Committee on National 

Security Systems Instruction (CNSSI) 4009 provides a common lexicon for discussing 

information assurance and national security systems (Committee on National Security 

Systems 2006).   

CNSSI 1199, a product of the U.S. Committee on National Security Systems, 

provides a means of categorizing U.S. national security systems in terms of the potential 

impact of unauthorized disclosure of the information residing on the system.  As shown  
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in Table 1, this categorization is broken down into three security objectives: 

Confidentiality, Integrity, and Availability.  Each of these is assessed in terms of 

information related to that security objective and the potential impact of its unauthorized 

disclosure.  
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Table 1. Potential Impact Definitions for Security Objectives (From National Institute of 
Standards and Technology 2004) 

 Potential Impact 

Security Objective Low Moderate High 
Confidentiality 
Preserving author-
ized restrictions on 
information access 
and disclosure, in-
cluding means for 
protecting personal 
privacy and proprie-
tary information. 
[44 U.S.C. SEC. § 
3542] 

The unauthorized dis-
closure of information 
could be expected to 
have a limited adverse 
effect on organiza-
tional operations, or-
ganizational assets, 
individuals, other or-
ganizations, or the 
national security inter-
ests of the United 
States. 

The unauthorized dis-
closure of information 
could be expected to 
have a serious adverse 
effect on organiza-
tional operations, or-
ganizational assets, 
individuals, other or-
ganizations, or the 
national security inter-
ests of the United 
States. 

The unauthorized dis-
closure of information 
could be expected to 
have a severe or cata-
strophic adverse effect 
on organizational op-
erations, organizational 
assets, individuals, 
other organizations, or 
the national security 
interests of the United 
States. 

Integrity 
Guarding against 
improper infor-
mation modification 
or destruction and 
includes ensuring 
information non-
repudiation and au-
thenticity. 
[44 U.S.C.,§ SEC. 
3542] 

The unauthorized 
modification or de-
struction of infor-
mation could be ex-
pected to have a lim-
ited adverse effect on 
organizational opera-
tions, organizational 
assets, individuals, 
other organizations, or 
the national security 
interests of the United 
States. 

The unauthorized 
modification or de-
struction of infor-
mation could be ex-
pected to have a seri-
ous adverse effect on 
organizational opera-
tions, organizational 
assets, individuals, 
other organizations, or 
the national security 
interests of the United 
States. 

The unauthorized mod-
ification or destruction 
of information could 
be expected to have a 
severe or catastrophic 
adverse effect on or-
ganizational opera-
tions, organizational 
assets, individuals, 
other organizations, or 
the national security 
interests of the United 
States. 

Availability 
Ensuring timely and 
reliable access to 
and use of infor-
mation. 
[44 U.S.C., § SEC. 
3542] 

The disruption of ac-
cess to or use of in-
formation or an infor-
mation system could 
be expected to have a 
limited adverse effect 
on organizational op-
erations, organization-
al assets, individuals, 
other organizations, or 
the national security 
interests of the United 
States. 

The disruption of ac-
cess to or use of in-
formation or an infor-
mation system could 
be expected to have a 
serious adverse effect 
on organizational op-
erations, organization-
al assets, individuals, 
other organizations, or 
the national security 
interests of the United 
States. 

The disruption of ac-
cess to or use of in-
formation or an infor-
mation system could 
be expected to have a 
severe or catastrophic 
adverse effect on or-
ganizational opera-
tions, organizational 
assets, individuals, 
other organizations, or 
the national security 
interests of the United 
States. 
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A security category is based on the potential impact of unauthorized disclosure of 

information residing on the system.  The security category is determined by the following 

equation: 

Security Category of information type = {(Confidentiality, impact), 

(Integrity, impact), (Availability, impact)}, where the acceptable values for 

potential impact are LOW, MODERATE, or HIGH as described in Table 1 

(National Institute of Standards and Technology 2004). 

If a U.S. system contains information at different impact levels, the highest 

impact level is used when determining the security category.  The U.S. government has 

adopted security labels based on a set of definitions for security objectives.  These are 

distinct from internationally developed and recognized definitions such as those 

contained in the Common Criteria for Information Technology Security Evaluation.  For 

example, the CDS described earlier in this document is designed to interface with 

security domains from UNCLASSIFIED all the way up to TOP SECRET as shown in 

Figure 4.  Traditionally, information labeled TOP SECRET and above is given the 

highest levels of protection as unauthorized disclosure of this information has a HIGH 

potential impact on national security.  Therefore, the security category of this system 

would be (Confidentiality, H), (Integrity, H), (Availability, H).  Within the ICD 503 

Framework this would be referred to as an ICD 503 H-H-H security category. 

The successful culmination of our research provides a formalized, statechart-

based approach to human-based process modeling.  We demonstrate this approach using 

the largely human-based Cross Domain Implementation Process (CDIP) and CDS 

Workflow process as exemplars.  Through formal methods tools and techniques, we show 

that it is possible to rigorously define, monitor in execution, maintain, and enforce 

requirements on these processes.  A benefit of this approach is continuous monitoring of 

the process if we implement a runtime model of the process with assertions.  We further 

show that our modeling approach is generalizable to any process. 
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C. RESEARCH HYPOTHESIS AND APPROACH 

1. Research Hypothesis 

We can extend the use of statechart assertions through the application of a process 

modeling approach, where: 

• The approach provides a systematic, formal methods-based procedure for 
precise development, debugging, runtime monitoring, long-term 
maintenance, and upfront validation and verification of decision-making 
processes. 

• Integrated statechart assertions serve as a requirements enforcement 
mechanism on the modeled process. 

We test our hypothesis vis-à-vis the application of the modeling approach to the 

CDIP and its successor the CDS Workflow process. 

2. Research Approach 

Using formal methods tools and techniques, we develop a systematic approach to 

process-modeling engineering.  This approach provides us with a systematic, repeatable 

basis for engineering, understanding, and assessing the security properties of processes 

developed with the modeling approach.  Formal models are a useful tool for helping us 

understand and clearly describe a system or process in unambiguous language.  Our 

modeling approach allows assertions to be exercised and visualized via animation.  This 

can be used as a communication tool for discussing the process and system with decision 

makers, process owners, management, and other stakeholders. 

The nature of the largely human-based CDIP and CDS Workflow process is such 

that it involves subjective and objective sub-processes.  By subjective, we mean 

processes that involve elements of human evaluation.  For example, evaluating the 

effectiveness of an authentication mechanism is a subjective process where the 

evaluator’s experience, knowledge, personal bias, and definition of the word 

“effectiveness” can affect the process outcome.  By objective, we mean processes that are 

repeatable, measurable, well structured, and produce predictable outputs for a given set of 

inputs.  For example, evaluating the strength of passwords is an objective process 

definable in terms of the computing power and time necessary to crack the passwords 
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successfully.  Figure 5 represents the CDS Workflow process as a composition of these 

subjective and objective sub-processes.  As part of our research, we break the CDIP and 

CDS Workflow down into its subjective and objective component parts.  We then use 

formal methods techniques to model the objective sub-processes in a well-defined formal 

language. 

 

Figure 5. Conceptual View of CDS Workflow Process 

As Monin points out, when a formal model is available, we can state with 

precision the properties we expect from the system (i.e., the system’s behavior) and then 

formally verify them (Monin and Hinchey 2003, 4).  Our approach to modeling provides 

for precisely stating the properties we expect from the objective components of the CDS 

Workflow process.  We assess the technical feasibility of our modeling approach in terms 

of its real-world applicability and provide us with a test case on a process being 

developed for managing and implementing CDS. 

D. CONTRIBUTIONS OF THIS RESEARCH 

1. Software Engineering 

We contributed to software engineering by introducing a novel way for software 

to automate a new domain, that being process-modeling engineering of high-level, 

human-based processes.   

2. Process-modeling Engineering 

We developed a systematic approach to formally modeling, validating and 

verifying high-level human-based processes.  Modeling human-based processes can be 
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challenging to model because of the hard-to-capture elements such as human decision-

making, sequencing, and concurrent activities.  We applied some of the tools and 

techniques from software engineering to provide an end-to-end means of modeling, 

validating, and verifying these processes within the same formalism. 

3. Case Studies 

We demonstrated the application of our systematic modeling approach through 

two case studies.  These two cases represent hard process modeling problems and 

encompass a large portion of the hard-to-capture elements mentioned above.   

4. Real-world Impact 

We provided feedback to the UCDMO on process errors discovered through the 

case studies, resulting in corresponding changes to the real-world process for requesting, 

developing, implementing, certifying and accrediting cross domain solutions.  

E. THESIS ORGANIZATION 

In Chapter II we assess and discuss relevant literature.  In Chapters III and IV we 

describe and exposit the modeling approach and provide usage examples.  In particular, 

Chapter III provides a detailed description of the modeling approach and its applications 

while Chapter IV applies the modeling approach to two particular processes.  The final 

chapter (Chapter V) provides conclusions and a view into future research. 
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II. RELATED RESEARCH 

A. INTRODUCTION 

There is a long history of research on the modeling of software and security 

processes, such as those for development, maintenance, and in particular for V&V and 

C&A of software and information systems.  For example, the First International 

Conference on the Software Process held in Redondo Beach, CA in 1991.  At this 

conference, many papers were presented on the topic of formally modeling software 

engineering processes.  This conference was primarily focused on high-level processes 

such as those by which software is developed as opposed to low-level processes such as 

those managed by an operating system (e.g., memory or file management).  Subsequent 

to the conference, the field of formal process modeling continued to evolve not only for 

software engineering processes but also for business processes.  Researchers in both 

fields experimented with a wide variety of tools and techniques in the effort to find ways 

to formally specify, validate, and verify high-level software development and business 

processes.   

Additionally, a significant body of research exists on the development of 

executable process models from formal specifications.  However, a gap exists in the open 

literature with regard to conducting runtime verification of the executable process 

models.  Our work addresses this need by providing a systematic process modeling 

approach that includes runtime verification of the executable process model via 

embedded statechart assertions. 

B. FORMAL METHODS IN PROCESS MODELING 

Gruhn and Emmerich introduced a software process modeling language called 

FUNSOFT nets.  These are essentially Petri nets with a formally defined semantics in 

terms of Predicate/Transition (Pr/T) nets and extended by multi-sets (Emmerich and 

Gruhn 1991).  Gruhn describes software process modeling as focusing on software 

process models that can be used for governing software processes with the intent of 

automatically detecting incongruities between a software process and its associated 
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model.  Executable software process models, according to Gruhn, contribute to increased 

software development productivity and software quality.  The underlying Pr/T net 

contains a multiplicity of features that facilitate the specification and governance of the 

modeled software processes.  These features include the following: a set of jobs 

representing software development activity; a set of object type definitions that can be 

attached to channels via a specified function in order to specify the allowable type for a 

particular channel; a set of predicates to define conditions on the objects; and an initial 

marking that respects the typing of channels.  Gruhn extended the discussion of 

FUNSOFT nets to encompass social processes represented by software development 

teams (V. Gruhn 1992).  He points out that the incorporation of human social interactions 

into software process models represents an area of research that is not well understood 

though he does suggest that the dialogue artifacts inherit in FUNSOFT nets may provide 

a means of describing these interactions in the context of software processes (Emmerich 

and Gruhn 1991).  Gruhn concludes that the non-linear factors involved in human social 

interactions prevent the modeler from doing more than pointing out explicitly where 

human interaction and cooperation impacts software development.  

Hibdon and Hartrum examine the development of an organizational process 

model based on object-oriented design concepts and formal software engineering 

methods.  They apply a sequential design process that builds an informal Rumbaugh 

model, translates it to a Z based specification, and finally translates the Z specification 

into the Refine language and builds an executable model via the Software Refinery 

Environment (Hibdon and Hartrum 1996).  The translation of Z to Refine requires special 

attention with regard to Z predicate constraints since Refine does not support Predicate 

constraints that must always hold true.  Constraints of this type must be mapped into pre- 

and post-conditions of Refine functions.  In our modeling approach, the statechart-based 

model and the embedded assertions are designed with the same modeling techniques in 

the same formalized language. 

An experimental application of process modeling technology at the British 

Airways showed that there is value in using flexible modeling tools as the modeling 

process can reveal flaws and inconsistencies in the original process.  If this results in a 
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change to the original process, the model needs to be changeable to reflect the 

adjustments (Emmerich et al. 1996).  Our modeling approach addresses this issue by 

using a modeling tool that is flexible enough to apply rapid changes yet continues to 

ensure that the model maintains consistency with the underlying formal semantic. 

Business process models have become increasingly complex, making it steadily 

more difficult to implement the models within an information system.  Koehler et al. 

suggest a dichotomy exists between the tools and methods used to describe a business 

process and the tools and methods used to describe the information technology (IT) 

artifacts implementing the process.  They make the case that process requirements should 

be made explicit and demonstrate the use of basic model checking techniques to verify a 

model’s global properties of reachability and liveness.  These terms are defined as 

follows: the reachability property states a particular situation can sometimes be reached 

whereas a liveness property expresses that, under certain conditions, a situation will 

ultimately occur (Koehler, Tirenni, and Kumaran 2002).  Here, the term “global 

properties” refers to those properties that apply to the entire model.  While verification of 

these properties is useful in terms of a basic understanding of how the model behaves 

during enactment, they do not provide insight or enforcement for properties within the 

context of the model.  In other words, these properties are agnostic to the contents of the 

model.  Our research addresses the need for contextual verification of a model’s internal 

properties through the runtime application of embedded statechart assertions. 

Van Dongen, Van Der Alst, and Verbeek as well as Van Dongen and Jansen-

Vullers show that process-aware information systems are used to support a wide range of 

business processes.  Often, these systems are configured based on a process model which 

drives the need to ensure that the process model is correct.  Therefore, many researchers 

have investigated the verification of process definitions with a focus on the construction 

of mathematically sound and executable syntax and semantics of specific modeling 

languages.  In spite of the importance of having a correct process model the authors 

indicate that for many process-modeling techniques, mathematically well-defined syntax 

and semantics do not exist or they are too complex for process designers.  In order to 

demonstrate the value of modeling techniques based on a well-defined language, the 
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authors use the Event-driven Process Chains (EPC) modeling language to describe their 

approach for verification of EPCs.  Then, through a series of reductions, they translate the 

EPC to a form of the classic Petri net model known as Place/Transition nets which 

consist of two modeling elements.  Their stated goal is to provide the process designer 

with a tool to find possible problems in a process specification.  To that end, they require 

the process designer to interactively evaluate the EPC and Place/Transition model at two 

different points in the verification process in order to make decisions about the behaviors 

exhibited by the model.  (Van Dongen, Van Der Aalst, and Verbeek 2005; Van Dongen 

and Jansen-Vullers 2005)  This approach leads to what the authors describe as a relaxed 

definition of correctness that focuses on giving the process designer the ability to 

determine whether, according to his personal standards for the process resulting in 

desirable versus undesirable behaviors, a process under examination is correct.  

As pointed out by Gruhn and Lane, the building of business process models 

(BPM) can benefit from well-established practices in software engineering (V. Gruhn and 

Laue 2007).  The focus and main contribution of their research is a discussion of the 

value of style checking in improving the quality of BPM.  The authors suggest that 

significantly improving the quality of BPMs related to software development using style 

rules and style checking leads to an improvement in the quality and success of enterprise 

software development. 

Business Process Modeling Notation (BPMN) is an emerging standard that allows 

business processes to be captured in a standardized format.  BPMN lacks formal 

semantics which leaves many of its features open to interpretation and hinders 

verification of processes described in BPMN.  Ye et al. proposed a methodology for 

mapping a subset of BPMN elements to the Yet Another Workflow Language (YAWL) 

specification language formal, set-notation based definitions. (Ye et al. 2008)  The 

authors developed a tool for automated translation of a BPMN model to a YAWL net.  

While this tool required preprocessing and did encounter translation errors it provided an 

initial step toward the type of formalization required for BPMN model verification.  

However, it also highlights the challenges of taking a model developed in a language 

lacking formal semantics and translating that model to a sufficiently formal language to 
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allow verification.  Our modeling approach addresses this gap by allowing the process 

engineer to both design and verify process models within the same formal specification 

language. 

Grady offered a universal architecture description framework (UADF) and 

showed how this combination of UML and SysML can be applied to modern day 

problem spaces to provide organized methods for identification of specialty 

engineering/quality, environmental requirements, product entities, and the map between 

models and product entities borrowed from Traditional Structured Analysis (TSA) 

(Grady 2009).  He points out the difficulty in connecting a design with the verification 

process through which we prove that a design satisfies its driving requirements.  Our 

work in applying statechart-based assertions to the modeling of processes addresses this 

by modeling requirements in the same statechart-based notation as the modeled process 

and embedding those assertions within the modeled process so that they can be enforced 

at runtime. 

The integration of human interactions into process modeling can be challenging 

due to the unpredictable nature of human behavior.  It is important to find ways to 

formally specify human interactions within a process in order to facilitate process 

validation and verification.  Zongyang, Liyang, and Hongli propose a formalization of 

human interactions within business processes through the introduction of the Human 

Processes and Artifact (HP/A) model.  This model applies rigorous, set notation-based 

definitions to human processes combined with statechart visual representations of the 

human interactions within a business process.  However, the authors identify a gap in the 

verification of models that incorporate human interactions due to ability of humans to 

make unpredictable choices (Zongyan, Liyang, and Hongli 2010).  Our work contributes 

to closing this gap in human-based model verification by integrating the representation of 

human choices within the process models designed through our modeling approach.  As a 

result, requirements or constraints on human choices can be modeled and enforced at 

runtime using statechart embedded assertions within an executable model.  This 

facilitates runtime verification of models that integrate the representation of human 

choices. 
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Hurtado Alegria, Bastarrica, and Bergel point out that the software process 

models can be sophisticated and large.  The formal specification of these models 

demands an enormous effort and once specified, the process engineer lacks tools to 

evaluate the quality of the process.  They demonstrate the Analysis and Visualization for 

Software Process Assessment (AVISPA) tool for analyzing and identifying errors within 

software process models as an a priori way to measure the quality of the process prior to 

execution.  The authors point out that formal V&V techniques for measuring and testing 

discrepancies between a model and its execution can only be carried out on a process 

model that has been implemented, tailored, and enacted (Hurtado Alegría, Bastarrica, and 

Bergel 2010; Hurtado Alegría, Bastarrica, and Bergel 2011).  Our process modeling 

approach addresses this concern by providing the process engineer with an iterative 

approach to process design that integrates V&V throughout and includes the development 

of an executable representation of the process model. 

Karniel and Reich identified a gap between the process planning and process 

implementation communities.  They indicate that many new product development (NPD) 

projects fail.  The design structure matrix (DSM) can be used for planning and modeling 

the process flow of NPD projects.  However, DSM lacks the formality necessary to verify 

correctness of the process model.  The authors suggest a relationship between the NPD 

project failures and inability to verify the DSM model of the project.  They propose a 

complex series of formal rules to translate a DSM model to a workflow net.  Workflow 

nets are a class of Petri nets with the necessary formalisms and tools to conduct process 

verification.  The authors point out that their approach is difficult to implement for more 

complex DSM models. (Karniel and Reich)  Our work addresses this gap by providing a 

visual modeling language that is accessible to both the process planning and 

implementation communities yet includes the necessary formality and tools to enable 

V&V of the modeled process. 

Human interactions are an integral component of business processes.  However, 

as Stuit points out, Human Collaboration Processes (HCP) are either ignored or not 

handled well by current process modeling approaches.  He argues that there is a demand 

for novel modeling tools for the design and modeling of HCPs in organizations.  Stuit 
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demonstrates an agent-based, graphical approach to modeling human interactions that 

serves as a “necessary precursor for their proper analysis and improvement” (Stuit 2011, 

3–5).  Our research addresses the modeling of human-in-the-loop decision-making 

through the artifacts of our statechart based process modeling approach.  We apply and 

enforce runtime constraints on decision-making through the use of statechart embedded 

assertions.  

C. SOFTWARE SAFETY 

Bishop provides an introduction to the concepts of information leakage and safety 

in information systems.  These terms are used rather than secure and unsecure because 

safety refers to the abstract model and security refers to the actual implementation 

(Bishop 2002, 47–91): 

Definition 3-1.  When a generic right r is added to an element of the 
access control matrix not already containing r, that right is said to be 
leaked. 

Definition 3-2.  If a system can never leak the right r, the system 
(including the initial state s0) is called safe with respect to the right r.  If 
the system can leak the right r (enter an unauthorized state), it is called 
unsafe with respect to the right r. 

The access control matrix model is fundamental to both of these concepts.  Access 

control matrices, originally proposed by Lampson were enhanced by Graham and 

Denning and are applied to modern day systems by Bishop (Lampson 1974; Denning 

1971; Graham and Denning 1972; Bishop 2002).  An access control matrix views a 

system in terms of the set of protected entities, contained in the set of objects O its active 

objects, contained in the set of subjects S; and rights drawn from the set of rights R in 

each entry a[s,o] where , , and [ , ]s S o O a s o R∈ ∈ ⊆ entity relationships are captured in a 

matrix A where rights drawn from R get assigned to each entry a[s, o].  The protection 

states of a system are then represented by the triple (S, O, A).  Within this context, 

leakage occurs when a generic right r R∈ is added to an element of the access control 

matrix not already containing r.  The set of authorized states for the system are those in 

which no command c(x1, …, xn) can leak r.   
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Safety as described here is critical for CDS.  These systems must employ access 

controls that guarantee safety in order to prevent the inadvertent transfer or disclosure of 

sensitive or classified information.  Yet, we cannot analyze a system or process in terms 

of its safety guarantees unless we precisely understand it.  Our statechart-based approach 

to formal process modeling provides the level of precision necessary to facilitate an 

analysis of the model in terms of its safety guarantees. 

D. STATECHARTS 

Harel introduced statecharts to address a well-recognized problem with regard to 

the difficulty of specifying and designing large and complex reactive systems where: 

A reactive system, in contrast with a transformational system, is 
characterized by being, to a large extent, event-driven, continuously 
having to react to external and internal stimuli.  Examples include 
telephones, automobiles, communication networks, computer operating 
systems, missile and avionics systems, and the man-machine interface of 
many kinds of ordinary software. (Harel 1987) 

His seminal work in the field of visual specifications has been studied extensively 

and utilized in wide variety of subsequent research on the application of statecharts and 

their successor, UML statecharts.   

Dong and Shensheng demonstrate that statecharts can be used to model business 

workflows by modeling an international travel agency’s process for handling customer 

travel requests.   They show that it is possible to represent hierarchal levels of the 

workflow and transition between levels by leveraging the AND/OR decomposition of 

statecharts, which provides the ability to, in effect, “zoom in” and “zoom out” of the 

model (i.e., move between abstract layers).  Additionally, they suggest that the well-

defined semantics of statecharts allow for the verification of statechart-based workflow 

models (Dong and Shensheng 2003; Harel 1987, 233–235). 

Drusinsky applied UML statecharts to real-world specification and verification in 

(Drusinsky, Shing, and Demir 2006; Drusinsky 2006; Drusinsky 2008).  Though the 

concepts and techniques introduced by Harel and Drusinsky focus on using statecharts for 

the specification and development of complex, reactive, hardware and software systems, 
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we show that these same techniques allow us to formally specify and reason about the 

largely human-based CDS Workflow process.  Drusinsky uses a Java based statechart 

notation (i.e., any Java statement can be written as a statechart action, any Java condition 

can be written as a statechart transition guard, and any Java method name can be written 

as a transition event) as a basis for describing reactive systems (Drusinsky 2006; 

Drusinsky 2011).  In other words, this Java based statechart notation is Turing equivalent.  

The notion of Turing equivalence in our chosen notation is important as this equivalence 

relationship tells us that the language described by the notation computes precisely the 

same class of functions as Turing machines.  Therefore, the deep body of research on the 

power of Turing machines applies to this Java based statechart notation.  For additional 

details, authors such as Sipser, Hopcroft, and Kelley provide a more complete discussion 

of the Turing machines and their range of computable functions (Sipser 1997; Hopcroft, 

Motwani, and Ullman 2007; Kelley 1995). 

Building on earlier work, Drusinsky and Shing extend UML statecharts to include 

K-statecharts (Drusinsky and Shing 2009).  This construct allows the use of knowledge 

logic formulae; a form of modal logic used for reasoning about multi-agent systems, for 

modeling multi-agent systems whose behavior depends on knowledge and belief 

statements made by the system agents.  Their model provides inter-visibility amongst the 

agents.  The ability of an agent to view into and act upon the behavior (i.e., states) of 

another agent allows the development of formalized, executable models for complex 

multi-agent systems. 

Crane and Dingel explore the syntactic and semantic differences between three 

different statechart formalisms: Classical, UML, and Rhapsody (Crane and Dingel 2007).  

Their results indicate a lack of standardization between these formalisms.  They show 

that due to subtle semantic and syntactic differences a model that is a well-formed 

statechart in all three of these formalisms may exhibit different behaviors in each of the 

separate formalisms.  This is not a concern for the research described in this document as 

we use only one of the formalisms, UML statecharts. 
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E. REQUIREMENTS 

In the field of formal verification of systems or systems-of-systems, we ensure 

that the behavior of a subject system complies with its formal correctness specification.  

However, the formal specifications are often based on natural language (NL) 

requirements specifications.  Drusinsky points out NL specifications are often ambiguous 

and we must be careful when writing formal specifications from NL in order to ensure 

that the translation is as accurate and precise as possible.  Several ongoing research 

efforts address this problem.  Bruegge and Dutoit articulated a UML-based model for 

requirements elicitation and analysis that demonstrates the capturing of customer 

requirements, typically in natural language and subsequent translation to formal or semi-

formal notation.  The transformation to a more formal notation ensures that system 

developers work from a common understanding of the requirements provided by system 

stakeholders (Bruegge and Dutoit 2004, 123–166).  Drusinsky showed us how to identify 

NL requirements of interest from UML analysis diagrams (e.g., activity diagrams, 

message sequence diagrams) (Drusinsky 2008). 

It is important to validate formal requirements specifications to ensure they 

correctly represent the intended behavior.  In the case of requirements specifications   

written as statechart assertions, Drusinsky, Michael, Otani, and Shing introduced a 

pattern-based methodology for validating them against their NL requirements.  This is 

particularly useful when the assertions are grouped into libraries of reusable formal 

specification assertions.  The underlying concept for this approach is that statechart 

assertions are often focused on a specific, coherent concern.  This suggests a likelihood of 

ensuring they correctly represent the intended behaviors by testing them against a finite, 

representative set of validation scenarios.  The pattern-based methodology uses 

representatives groups of tests (i.e., patterns) such as obvious success, obvious failure, 

event repetition, and multiple time intervals to ensure that testing includes the type of 

scenarios often overlooked in the validation process. (Drusinsky et al. 2008; Drusinsky 

2011) 
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Our work addresses validation of requirements for human-based processes by 

facilitating the clear, visually appealing articulation of requirements in the same notation 

used to model a process under examination.  When articulated in this manner, post-facto 

analysis and modification of these requirements may be performed in a rigorous and 

well-structured manner.  Our work addresses the requirements verification concern for 

software engineering related human-based processes by ensuring process adherence to 

requirements articulated in statechart assertions and embedded within our statechart-

based process models. 

F. RESEARCH GAPS 

This research identified gaps in the wide body of research on process engineering 

and process validation and verification.  A significant body of research exists on the 

development of executable software development and business process models from 

formal specifications.  However, a gap exists with regard to conducting runtime 

verification of the executable process models.  Our work addresses this need by providing 

a formal process modeling approach with runtime verification of the executable process 

model via embedded statechart assertions.  We achieve this by treating human-based 

processes, conceptually, as reactive systems and applying to them formalized tools and 

techniques. 

We examined research that articulates the challenges of taking a model developed 

in a language lacking a formal semantic and translating that model to a sufficiently 

formal language to allow verification.  Our modeling approach addresses this gap by 

allowing the process engineer to both design and verify process models within the same 

formal specification language. 
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III. THE MODELING APPROACH 

In this Chapter, we describe the approach by which we apply formal methods 

tools and techniques to the modeling of partially automated, human-based, C&A 

processes. 

A. FORMAL METHODS TOOLS AND TECHNIQUES 

1. Desirable Attributes of Formal Methods to Support the Modeling Ap-
proach 

Analysis of the research discussed in Chapter II revealed knowledge gaps in the 

field of applying formal methods to high-level processes.  We developed a set of 

desirable attributes for a formal specification language and associate tools to support the 

modeling of high-level, human-based processes and address the identified knowledge 

gaps. 

The language should have a well-defined syntax and semantics in order to provide 

the level of formality necessary to unambiguously model and facilitate V&V of the 

process.  The visual representation of the language should be sufficiently understandable 

as to provide a good communication medium between users, stakeholders, and process 

engineers.  The language needs to provide mechanisms or artifacts that allow the formal 

specification of human-in-the-loop decision-making.  The language needs to be able to 

represent attributes such as hierarchy and concurrency that are often found in complex 

human-based processes.  The formal specification of the model as well as the artifacts 

necessary for verification of the model should all be expressible in the same language.  

Table 2 shows a comparison chart for the languages. 

The language’s associated tools should provide a mechanism for building a visual 

representation of the models using the chosen language.  The modeling tools should 

provide the flexibility to make adjustments to the process model as necessary.  They 

should also be able to generate an executable representation of the model.  The associated 

tools should provide the ability to conduct runtime verification of the modeled process, 

an automated means of verifying an executing model’s adherence to specified properties 
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or requirements.  This would require a means of monitoring the process model in 

execution and enforcing desirable runtime properties of the executing process model, 

such as ensuring adherence to temporal constraints. 

We hypothesize that a formal language and associated tools that have, at a 

minimum, the listed attributes will enable the formal specification, maintenance, 

validation, and runtime verification of a model that accurately represents a partially 

automated, human-based, C&A process and provide a viable communication medium for 

discussing the process among users, stakeholders, and process engineers. 

2. Assessment of Formal Methods for Desirable Attributes 

We assessed several formal languages and their associated tools, such as 

Communicating Sequential Processes (CSP) (Hoare 1985), Petri nets (Emmerich and 

Gruhn 1991), the Z formal language, and UML statecharts (Drusinsky 2006) to determine 

whether they possessed the attributes listed in Section III.A.1.  These languages are 

compared in Table 2 on the basis of how closely each on matches our set of desirable 

attributes. 
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Table 2. Desirable Attributes of a Formal Language for Process Modeling Approach 

 Language 

Description of Attributes 

C
SP

 

Pe
tr

i N
et

s 

Z
 

U
M

L
 

St
at

ec
ha

rt
s 

Well-defined syntax/semantics     

Easily understandable (visual)     

Specify human decision-making     

Represent nesting     

Represent hierarchy     

Represent concurrent activities     

Model/verify in same language     

 

Ryan and Schneider used CSP as a modeling mechanism for a variety of security 

protocols (Ryan and Schneider 2000).  Wong and Gibbons demonstrated a technique for 

representing BPMN process models in CSP in order to provide a semantics for formal 

analysis and comparison of BPMN diagrams (Wong and Gibbons 2008).  As discussed in 

Chapter II of this document, CSP is based on a relatively complex mathematical notation.  

Many researchers in the field of process modeling have discussed the importance of 

reducing the complexity and increasing the ease of understanding formal process models 

in order to better communicate with process users, stakeholders, and designers  
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(Emmerich et al. 1996; Koehler, Tirenni, and Kumaran 2002; Zongyan, Liyang, and 

Hongli 2010; Hurtado Alegría, Bastarrica, and Bergel 2010; Hurtado Alegría, Bastarrica, 

and Bergel 2011; Karniel and Reich). 

Many researchers have applied Petri nets to high-level processes as a means of 

formal specification.  The works of Emmerich and Gruhn (1991); Gruhn (1992); Van Der 

Aalst and Van Hee (2004); and Van Dongen, Van Der Aalst, and Verbeek (2005) 

demonstrate a variety of methods of applying Petri nets as a tool for process modeling.  

The graphical nature of Petri nets makes them an excellent tool for communicating about 

a process under examination.  However, researchers have pointed out that Petri nets do 

not scale well for the visual representation of large, complex processes as the basic Petri 

net formalism lacks artifacts for representation of hierarchy.  Clempner proposed an 

extension to represent hierarchy in a subclass of Petri nets known as Decision Process 

Petri Nets (DPPNS) though his work is formative in nature (Clempner 2010). 

Hibdon and Hartrum built an executable model of a U.S. Air Force component 

known as a wing.  Their modeling process required creation of an informal Rumbaugh 

object model (Rumbaugh et al. 1991), translation to the formal language Z, and 

subsequent translation into Refine constructs for execution (Hibdon and Hartrum 1996).  

The final product of their multi-step approach was an executable model; however, the Z 

language and the Refine construct are both complex, non-visual representational 

formalisms. 

UML statecharts are a visual formalism that has been used for representation and 

formal specification of systems, architectures, and processes.  As discussed in Chapter II 

of this document, researchers have demonstrated that UML statecharts have well-defined 

semantics with artifacts expressive enough to capture elements of human-in-the-loop 

decision-making.  They have been demonstrated as an effective visual communication 

mechanism for communicating about processes (Dong and Shensheng 2003).  

Specifications written as statechart assertions and embedded within a statechart-based 

process model enable runtime verification of the model.  UML Statechart assertions are a 

class of statecharts and as such, written in the same language.   
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UML statecharts possess the desired attributes for a formal specification language 

that we outlined in Section III.A.1.  This formal language was the best fit in terms of its 

potential for use in addressing the research gaps identified in Chapter II.   

After deciding on a language that satisfies the stated desired attributes, we needed 

to determine if any of the currently available tools for working with UML statecharts 

would satisfy the requirements stated in Section III.A.1.  Both research based and 

commercially based tools exist for the design and manipulation and statechart-based 

models.  We look at several of these tools such as VisualSTATE, Yakindu, and 

StateRover (IAR Systems 2012; Muelder 2011; Drusinsky 2006). 

VisualSTATE is standalone statechart-based modeling tool that also provides a 

point-and-click interface for easy development and editing of models.  This software has 

a built-in module for code-generation to automatically create an executable representation 

of the model in C++.  The software automatically performs syntactic verification to 

ensure model compliance with the underlying language rules.  The verification module 

includes the functionality for static analysis of the model to ensure compliance with both 

pre-defined and custom properties.  VisualSTATE has a dynamic analyses module that 

can provide an animated view of how specific events affect a model.  Events are fed into 

the simulation via an interface with the ability to replay sequences of logged events.  

However, VisualSTATE does not include the functionality to enforce requirements in 

conjunction with runtime execution monitoring. 

Yakindu is a statechart-based modeling tool that operates as a plug-in for the 

Eclipse integrated development environment (IDE).  Yakindu is a visual modeling tool 

that does provide a mechanism for automated generation of an executable model.  It has a 

point-and-click interface that makes it easy to build and dynamically adjust models.  The 

Yakindu plug-in has the capability to interface with an external code-generator module 

capable of mapping a statechart model to C or Java source code.  However, the code 

generator module is experimental and must be installed separately from the Yakindu 

plug-in.  The plug-in applies automatic syntactic verification rules to each statechart  

 



 32 

model and reports discrepancies to the model developer via both visual and textual 

cueing.  Yakindu provides a simulation function that executes the generated code but it 

does not provide the ability to conduct runtime verification. 

StateRover is a UML statechart-based modeling plug-in for the Eclipse IDE.  This 

tool includes a built-in code generation module that automatically maps a statechart 

model to C, C++, or Java source code.  Model design is accomplished through a point-

and-click interface that makes it easy to build and dynamically adjust or reuse models.  

The tool includes an automated syntactic and semantic validation module to ensure model 

compliance with the underlying statechart syntax rules and semantics.  In addition, code 

generation will not run unless the model is able to successfully pass the syntactic and 

semantic validation with no errors.  StateRover provides the functionality for runtime 

verification of a statechart model through the application of embedded statechart 

assertions enforced within the model during execution.  StateRover provides an 

integrated, white-box3 test generator that builds test cases for use in automated testing.  

The generated test cases are used in within the JUnit4 test framework to provide runtime 

execution monitoring of the model as it enacts the generated test cases.  Embedded 

statechart assertions serve to enforce runtime properties or constraints placed on the 

model (e.g., temporal constraints). 

Of the statechart modeling tools surveyed, StateRover possesses the desired 

attributes outlined in Section III.A.1 for a tool designed to enable modeling in our chosen 

formal language.  This tool was a best-fit in terms of its potential for use in addressing the 

research gaps identified in Chapter II. 

B. PROCEDURE 

The diagram shown in Figure 6 outlines our process modeling approach.  Solid 

lines represent the primary procedural flow path.  Dashed lines represent ongoing 

communication with process stakeholders to ensure a modeled process aligns with and 

                                                 
3 The white-box test generator is discussed in Section III.C.6. 
4 The JUnit test framework is discussed in Section III.D.3. 



 33 

achieves their desired outcomes as originally specified in stakeholder requirements.  This 

ongoing feedback loop is one component of model validation. 

Our approach provides the level of formalism necessary to rigorously specify a 

partially automated, human-based, C&A process and conduct runtime verification on that 

process to ensure the process behaves exactly as it was designed.  This allows the process 

engineers and stakeholders to ensure that the process flows exactly as it is intended.  

Formalization will significantly improve the final product of a process for developing, 

implementing, and C&A of cross domain solutions designed to facilitate and guard the 

flow of information between various security domains.  Formalizing the process will help 

ensure that it provides a product that is well-defined, well-developed, and consistent in its 

execution. 

 

Figure 6. Overview of Statechart-Based Process Modeling Approach 
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1. Iterative Design 

Our modeling approach allows the process engineer to iteratively create a process 

model in conjunction with creation of the process itself.  Once the process is established, 

the process engineer can use this approach to adjust the model throughout the lifecycle of 

the underlying process. 

Berry and Wing tell us that a second look at the thing being formalized can result 

in a better product, since for any large or highly complex project, one must understand 

the problem – a lack of understanding can lead to catastrophic failures.  They go on to 

suggest that such an understanding is more likely to be achieved when building a 

“complete” model of the intended system (e.g., a formal specification or a prototype) 

(Berry and Wing 1985).  Our approach facilitates such an understanding of the modeled 

process through construction of the UML statechart-based process model.  For example, 

Figure 7 is a process outline of the CDIP provided by the UCDMO while Figure 8 shows 

the statechart-based model developed through our modeling approach applied to the 

CDIP. 

 

Figure 7. Cross Domain Implementation Process (CDIP) 
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The outline of Figure 7 is informal in the sense that it pictorially describes a 

process, yet it has none of the elements necessary to be considered a formal specification.  

We consider a specification to be formal when it is written with mathematically based 

techniques as the foundation for the specification language.  Gabbar says, “A 

specification language is based on a set of formulae, written in a formal language, to 

describe the underlying system” (Gabbar 2006).  In the case of our modeling approach it 

describes the underlying human-based process.  

 

Figure 8. StateRover Model of CDIP 

Figure 8 shows a large-scale view of a formal model of the CDIP.  We developed 

this model using our statechart-based formal modeling approach in conjunction with the 

StateRover modeling tool.  The CDIP formal model provides us with an unambiguous 

view of the process under examination.  The process of building the UML statechart-

based model serves as the “very important” second look described by Berry and Wing 

(Berry and Wing 1985). 

2. Terminology 

We use the terms thread, transition, decision-point, process requirements, timing, 

complexity, layering, and scenario in a particular way and provide definitions below to 

ensure readers develop a common understanding of our lexicon for development of a 

statechart-based process model.   
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a. Threads 

In our approach to formal process modeling, we use statechart threads (the 

blue dashed-line boxes of Figure 9) to represent orthogonality within states.  

Conceptually, orthogonality resembles concurrency though it is different in that the 

activities captured in different threads are, for the most part, independent of, or 

orthogonal to each other; whereas concurrent activities occur in relation and typically at 

the same time as one another and due to the interrelationship can involve interference, 

synchronization, locking, and recovery.  Throughout this document, we use the term 

thread to refer to statechart threads vice OS-level or programming language related 

threads.  The latter threads are typically used as the computer programming 

implementation of concurrency while the former provides a means for notating the 

existence of orthogonality within a process. 

 

Figure 9. Example of Threads in "Op_Monitor" Sub-Process 
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b. Transitions 

A process has as its atomic operation what we call “steps.”  There can be 

sub-processes as well.  Sub-processes represent sets of steps grouped together on the 

basis of cohesion and coherence.  The Oxford English Dictionary defines these terms as: 

cohesion, “the action or condition of cohering; cleaving or sticking together” and 

coherence, “consistency in reasoning, or relating, so that one part of the discourse does 

not destroy or contradict the rest” (Oxford English Dictionary 2012a).  Within a process 

there can be transitions between steps, as well as between sub-processes.  In our 

modeling approach, transitions between sub-processes are modeled using an artifact 

called “off-page references.”  We see a transition from processing a CDS request to 

implementing the CDS in Figure 10.  CD_Officer_Validator is a thread contained within 

the Process sub-process of the CDS model.  In this case, we observe a transition from the 

sub-process named Process to the sub-process named Arbitrate via the off-page reference 

RefToArbitrate1 (outlined in red). 

 

Figure 10. Transition Using an “Off-Page Reference” Artifact 
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c. Decision Points 

We are interested in modeling processes that have a strong flavor of the 

human playing a significant role in the enactment of the process.  The process itself can 

have varying levels of automation, and the level of automation may vary by modality and 

circumstance.  For instance, on a ship, the process of target acquisition and firing may be 

highly automated under nominal operating conditions, but weapon systems (e.g., 5”/54 

series guns) may be operated manually in highly degraded operations.  In the context of 

human-based processes, we refer to decision points as those places where a decision must 

be made (e.g., yes or no, approve or disapprove) and that decision’s outcome falls within 

an expected range of values.  In other words, during process analysis, we seek out the 

decision points and articulate them in the model as conditional- or value-based transitions 

between components of the model.   

 

Figure 11. Decision Point Example 
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The diamond in Figure 11, labeled bIntApprovConn (outlined in red), 

demonstrates the StateRover artifact view of a decision point in our process model.  We 

found a significant number of decision points when analyzing and modeling our 

demonstrative exemplar processes.  Therefore, we recommend using a table to manage 

the associated variables and ensure all decision points are implemented in the model as 

demonstrated in Table 3.  In column 1 we use a plain language description of the 

decision, in column 2 we list the variable name that will be used in StateRover’s visual 

switch construct, in column 3 we list the possible outcomes of the decision point (i.e., the 

possible values of the variable), and in column 4 we track whether the decision point has 

been incorporated into the process model. 

Table 3. Example Decision Point Tracking 

Description Variable Name Possible 

Values 

In 

Model 

Decide whether CDS requestor is a DoD 

component. 

bIsDod True, 

False 

☒ 

Determine whether capability exists as 

an enterprise or centralized capability. 

bEntOrCentCapaiblity True, 

False 

☐ 

d. Process Requirements 

Process requirements are those properties, attributes, or timing constraints 

that must be upheld as the process executes.  For example, if a process requires that some 

event occur at a set time, our process modeling approach provides runtime process 

monitoring to ensure that the event occurs within a specified temporal constraint.  A 

(formal) specification is a representation of a requirement that uses notation a computer 

can understand and read in a finite amount of time using finite resources (Drusinsky 

2006).  Our modeling approach uses a UML statechart-based language to build 

specifications.  We use this formal specification language to create embedded statechart 

assertions, which serve to enforce process requirements at runtime. 
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e. Timing 

Timing refers to quantifiable time constraints or restraints (e.g., the time at 

which something must occur or the time within with something must occur).  In human-

based processes, we expect to find many temporal restraints such as deadlines for 

submitting paperwork.  Therefore, it is important for a process modeling approach 

intended to formalize human-based processes that we are able to capture and effectively 

address timing related information.  In order to build timing into our models, we leverage 

temporal constructs inherent in our chosen modeling software.  For example, the 

statechart assertion of Figure 12 uses the TRTimeoutSimulatedTime construct of 

StateRover to apply a temporal constraint to the modeled process.  We do this by 

embedding the statechart assertion of Figure 12 into the CDS process model.  Embedded 

statechart assertions are the primary vehicle for building and applying temporal 

constraints and restraints to a process modeled with our approach. 

 

Figure 12. Applying Temporal Constraints and Restraints 

f. Complexity 

Several researchers have examined the notion of complexity as it relates to 

processes and have presented metrics to provide information about the understandability 

and maintainability of business process models (Volker Gruhn and Laue 2006; Cardoso 
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2007; Cardoso et al. 2006).  Cardoso presented the control-flow complexity (CFC) metric 

for determining the complexity of business processes.  This metric is expressed as a 

summation of joins and splits (AND, OR, or XOR) in a process.  In general, the more 

splits and joins a process has, the more complex it is (i.e., it is more difficult to develop 

and maintain complex process models).  However, as Cardoso points out, the CFC metric 

is somewhat simplistic and does not account for the increased complexity introduced by 

nested structures (Cardoso et al. 2006).  We adopt Cardoso’s definition of process 

complexity and note that when applied to the type of partially automated, human-based, 

C&A processes that we are interested in, as the number splits or joins and nested layers 

increases, so does the complexity of the process.   

g. Layering 

Layering refers to the ability to individually articulate nested levels within 

a process model.  This is a particularly useful technique when analyzing and building 

models of highly complex processes.  For instance; in our exemplar process, the CDS, we 

wish to capture various views of the model.  This approach allows us to view the model 

at varying levels of complexity, depending on the desired outcome of the viewing.  For 

instance, the top-level view of Figure 13 provides an overview of the process model with 

each of the major phases depicted as a single state. 

 

Figure 13. Top-level Statechart Model of CDS Workflow Process 
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This view provides a large-scale aspect on the process vice details of the 

inner workings of each process.  In the second level view, we can examine each sub-

process individually as shown in Figure 14 and Figure 15.  The initiate sub-process is 

articulated in Figure 14 while the Op/Monitor is articulated in Figure 15.   

 

Figure 14. Sub-process Titled “Initiate_CDSR” 

These sub-processes sit at the second level of the hierarchy for the 

purposes of our analysis and each represents a fuller view of its respective sub-process, 

each of which is represented by a single state at the top-level of the process model.  Part 

of dealing with complexity is the ability to work in the abstract, and then incrementally 

decompose the process into successively finer levels of detail (i.e., processes, sub-

processes, and so on). 
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Figure 15. Sub-process Titled “Op/Monitor” 

The diagrams shown in Figure 16 demonstrate the successive 

decomposition of four levels of hierarchy.  When viewed together, we see that the ability 

to deal with complexity in this way makes it possible to formally model hierarchical 

processes. 
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Figure 16. Decomposing a Complex Hierarchical Process Model 
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h. Scenario 

In the context of our modeling approach, the term scenario refers to a 

combined collection of desired properties, timings, human decisions, and/or conditions 

that we wish to apply vis-à-vis a process model in order to exercise or stimulate various 

aspects or behaviors of the model.  We use this term to describe situations for which we 

will develop tests during the “V&V Process Model” step of our modeling approach. 

C. MODELING APPROACH 

In this section we will discuss the details of each step of our process modeling 

approach shown in Figure 6. 

1. Process Selection 

Process selection is a non-trivial matter.  Informal processes or well-defined 

processes whose outcome is not safety or security critical may not require the level of 

formality afforded by our approach.  The application of our statechart-based modeling 

approach requires a time investment to analyze the process and apply formal methods.  

However, it is a worthwhile investment for the types of processes that we are interested in 

formally specifying and reasoning about since the modeled process will be easier to 

understand and communicate about and the resulting process modeling will be easy to 

develop, debug, and maintain. 

2. Process Analysis 

Prior to constructing the process model in StateRover, it is helpful to analyze the 

process.  During this phase of our modeling approach, we are identifying components of 

the process that lend themselves to articulation as artifacts in a statechart-based formal 

model.  This is also where we identify specific requirements or specifications which we 

wish the model to adhere to.  This eases the process of building and verifying the model.  

It also facilitates the development of a more robust, granular, and higher fidelity model.  

Process analysis facilitates a more full-bodied statechart-based process model via the 

thorough a priori inspection of the process during model development.  Similarly, 
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process analysis provides the process engineer an opportunity to identify many if not all 

of the process components and timing considerations with a focus on the behavioral 

properties of the model vice run of the mill functional properties and requirements.  

Hence, we are able to develop a more granular and higher fidelity model. 

Process formalization requires thorough analysis of the chosen process as a key 

component of developing the formal model in StateRover.  Through analysis, we develop 

a better understanding of the process under examination and begin to formulate a plan for 

contextualizing individual components vis-à-vis our modeling approach with its 

associated views and terminology.  We must understand threads, transitions, decision 

points, process requirements, timing, complexity, layering, and important steps in the 

process. 

The process engineer uses a combination of available sources such as informal 

drawings, interviews with stakeholders, mission statements, modeling diagrams (e.g., 

UML activity diagrams, YAWL workflow charts), or basic flowcharts.  The focus of this 

phase of our modeling approach is to develop as complete an understanding of the 

process as possible.  One of the challenges of process analysis is that the stakeholders 

and/or process owners’ understanding and documentation of the process could range 

from tribal knowledge held by one or a few individuals to more formalized 

documentation such as written flowcharts or models based on notations like BPMN or 

UML. 

During this phase of the modeling approach the process engineer also gathers 

requirements from process stakeholders.  These will provide the source material for 

developing embedded statechart assertions, a key element to enable runtime execution 

monitoring of the process model. 

We show in Chapter IV of this document how the analysis of a process leads to a 

fully realized statechart-based formal model of the process. 
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3. Construct Process Model 

It is during this step of the modeling approach that the process engineer builds the 

statechart-based process model.  Leveraging the products of the “Process Analysis” step 

he visually articulates the process using the formal language and tools chosen for their 

adherence to the desirable attributes listed in Section III.A.1. 

We previously demonstrated the novel use of UML statecharts as a medium and 

the StateRover modeling tool as a mechanism for formally modeling the CDIP, a partially 

automated, human-based, C&A process (Schumann 2009).  In this document, we 

demonstrate the use of UML statecharts as a fundamental component of the process 

modeling approach shown in Figure 6. 

Since our chosen modeling tool generates an executable model in Java we are 

able to add Java code to just about any component of the model such as states, transitions, 

or flowchart boxes.  In our discussion of case studies, we will show how this 

functionality helps us ensure that embedded assertions are enforced at runtime.     

 

Figure 17. Top-level Statechart Model of CDS Workflow Process 

UML statecharts provide a visually palatable vehicle for the articulation of, 

formalization of, and communication about a process model such as the one shown in 

Figure 17, a process model for our demonstrative exemplar, the CDS Workflow process.  

In addition, we are able to take full advantage of automated statechart-handling 
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capabilities built into StateRover such as hierarchy, concurrency, non-determinism, 

syntactic validation, workflow modeling, automated testing, and runtime monitoring. 

a. Iterative Validation 

During the design process, the process engineer is able to use the 

immediate feedback from StateRover’s underlying rule checking mechanisms to identify 

possible errors within the process model.  The process engineer can use the errors 

identified via this mechanism to diagnose, troubleshoot, and correct inconsistencies in the 

process model.  This systematic approach helps ensure that the model is founded on and 

adheres to the underlying UML statechart formalisms. 

 

Figure 18. StateRover Automated Validation 

Figure 18 demonstrates the embedded error identification within the StateRover 

plug-in.  For this example, we deliberately placed a unitary terminal state, circled in red, 

in the CDS Workflow process model’s top level.  Since this terminal state does not have 

a corresponding start state, it constitutes an error and is identified as such via 

StateRover’s embedded validation mechanism.  We refer to this as iterative validation 
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and use it throughout construction of the process model and the statechart assertions to 

ensure they adhere to the underlying UML statechart semantics. 

4. Construct Statechart Assertions 

In this step, the process engineer transforms the requirements developed during 

“Process Analysis” into statechart assertions.  The UML statechart articulation of each 

requirement is in the same statechart-based language as the rest of the model.  This 

provides a precise way of stating requirements that directly takes advantage of the 

formalisms used to develop the process model.  During the execution phase of our 

approach, embedded statechart assertions are employed as enforceable runtime 

specifications. 

Embedded statechart assertions are a key addition of this research to the process 

modeling world.  They facilitate runtime execution monitoring as well as enforcement of 

desirable properties or requirements placed on the process (i.e., submission timeline for a 

request necessary for process progression).  Within this section, we cover the conceptual 

foundations of statechart assertions.  We explore their benefits as applied to process 

engineering and modeling.  We investigate their employment to achieve runtime 

monitoring of a human-based process in execution. 

a. Statechart Assertions 

A reason for using a formal methods based modeling approach is to 

demonstrate mathematically that the model adheres to a set of stated requirements.  A 

number of formal notations exist for the specification of formal models.  Some examples 

include the Z Notation, Vienna Development Method (VDM), and the B Method (Monin 

and Hinchey 2003).  Each formal notation can be distinguished by its particular 

application of set-theoretic mathematical concepts, the underlying logic, or how they 

assist in the development of computer programs, which is the typical use for such 

notations.  For statechart-based modeling, Drusinsky provided an analogous capability by  
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extending UML statechart diagrams to include statechart assertions, which provide a 

formal artifact for the specification of requirements (i.e., a formalized specification 

language). 

Statechart assertions have two fundamental differences from the 

statecharts used throughout the rest of our modeling process.  1) They have a built-in 

mechanism for indicating Boolean success or failure (true/false), which makes them 

suitable for formal specification and 2) they can be nondeterministic if desired.  Figure 19 

Figure 19 shows a statechart assertion. 

Drusinsky points out that it is important to exercise meticulous care in the 

development of statechart assertions as bad assertions reflect poorly conceived 

requirements and are unlikely to help ensure the system behaves as desired (Drusinsky, 

Shing, and Demir 2007).  Additional papers by Drusinsky, et al. provide more examples 

of the development and application of embedded statechart assertions (Drusinsky 2008; 

Drusinsky, Shing, and Demir 2006). 

 

Figure 19. Example of an Statechart Assertion 

Sindre and Opdahl postulate that a visually appealing approach may 

actually be more successful than a textual approach when capturing requirements.  This is 
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because simple and intuitive diagrams provide a better overview of the functionality of a 

system and make it easier to see each stakeholder’s interest in the system which makes it 

easier to communicate about the captured requirements (Sindre and Opdahl 2000).  The 

combination of UML statecharts and embedded statechart assertions provides us with a 

visually appealing formal process modeling approach wherein the model and the 

assertions that enforce properties of the model are written in the same language, in this 

case UML statecharts.  This addresses one of the challenges seen in previous formal 

process modeling research; the integration of a separate formal specification language in 

order to add formalisms to the process modeling approach (Emmerich and Gruhn 1991).  

Additionally, process models will be easier to develop, debug, and maintain due to the 

ability for users, stakeholders, and process engineers to easily communicate about the 

modeled process. 

b. Validating Statechart Assertions 

According to the Oxford English Dictionary, an oracle is, “an opinion or 

declaration regarded as authoritative and infallible” (Oxford English Dictionary 2012b). 

Since both our process model and the statechart assertions that represent requirements on 

the model are derived from natural language descriptions, it cannot be assumed that one 

is more of an oracle than the other.  However, the properties upon which we base 

statechart assertions are typically small enough that they don’t require more than five to 

ten validation tests.  This suggests that we can use a relatively small number of tests to 

build a body of evidence for using the assertions as an oracle for testing the behaviors of 

a process model.  A pattern-based methodology like the one described by Drusinsky, 

Michael, Otani, and Shing can help ensure that we cover often overlooked testing areas 

when writing validation tests for our assertions (Drusinsky et al. 2008; Drusinsky 2011).  

They describe scenario test patterns such as obvious success, obvious failure, full 

scenario success, full scenario failure. 
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Figure 20. Timeline Diagram for “obvious success” Assertion Test Scenario 

The diagram of Figure 20 shows a test scenario to ensure that the assertion 

of Figure 19 succeeds when it is supposed to for a simple set of conditions (i.e., obvious 

success test pattern).  Once the assertion has entered state Timer it must see a 

Requirements_Valid() event with 100 time units or the assertion fails.  The event 

Requirements_Valid() occurs at time 90 and no further events or transitions occur so we 

expect this assertion succeed during testing. 

 

Figure 21. Timeline Diagram for “obvious failure” Assertion Test Scenario 

In contrast Figure 21 shows a test scenario to ensure that the assertion of 

Figure 19 fails when it should for a simple set of conditions (i.e., obvious failure test 

pattern).  In this case, the timer advances past 100 prior to a Requirements_Valid() event 

so a timeout will fire and cause the assertion to fail. 

5. Embed Assertions in Process Model 

During this step of the modeling approach, representative artifacts for each 

statechart assertion are embedded in the process model.  Figure 22 demonstrates the use 
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of an embedded assertion in the CDS Workflow formal process model.  In the “Initiate 

CDS Request” phase of the CDS Workflow we use an embedded assertion, _assert1 (see 

Figure 22, outlined in red), to ensure that the human decision makers initiating a CDS 

request have set impact levels for the requested CDS.  Impact levels provide a means of 

categorizing national security systems in terms of the potential impact of unauthorized 

disclosure of the information residing on the system and must be explicitly stated as part 

of a CDS request.   

We previously examined testing of statechart-based formal process models and 

showed that embedded assertions could be applied to formal models of human-based 

processes (Schumann and Michael 2009) as a means of enforcing requirements. When 

testing the model, failures to adhere to the requirements of the assertion are recorded and 

reported by the testing module. This ensures that the model behaves as expected under a 

wide variety of conditions while the executable version of the model is running.  This 

technique allows us to use embedded assertions as an enforcement tool for process 

requirements because the embedded assertions are located within the model (see Figure 

22), which provides unique access to the process model’s events, variables, and timing 

structures as it executes.  This positioning is the enabler that allows embedded statechart 

assertions to act in an enforcement role. 

The _assert1 box of Figure 22 is an example of the method by which an statechart 

assertion is embedded within a process model.  The _assert1 box acts as a placeholder 

and insertion point for the statechart assertion of Figure 19 which shows the statechart 

assertion for ensuring that meets temporal requirements.  The natural language version of 

this requirement is: 

“R1: A review of the CDS request must be completed within 100 time units of the 

time review begins.” 

If this assertion detects a setLevelsNull system event, bSuccess is set to false 

whereas a setLevels system event prints a message to the runtime monitor console and 

the statechart assertion remains in the Start state.  This provides one example of the type 

of response mechanism available upon detection of a system event.  The bSuccess 
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Boolean variable allows the process engineer to validate whether the conditions of the 

assertion have been met or not.  Verification occurs through an interlacing of the process 

model and the JUnit Test framework to apply a variety of automatically and manually 

generated testing scenarios. 

 

Figure 22. Statechart Assertion Scoped by Substatechart Requestor_Initiate 

An added advantage of embedded statechart assertions is that they are naturally 

scoped by the context of their substatechart (Drusinsky 2006).  Therefore, they are only 

active when their substatechart is entered and they cease to be active when the process 

transitions out of the containing substatechart.  This property of embedded statechart 

assertions lends itself to hierarchy and scalability in the process modeling approach.  This 

property also allows the process engineer to better deal with process complexity by 
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providing the ability to enforce process requirements in runtime at a variety of levels and 

with varying scope.  This also facilitates easier development, debugging, and 

maintenance as the process engineer can quickly ascertain the scope of each embedded 

statechart assertion. 

6. V&V Process Model 

During this step of the modeling approach, we validate and verify the process 

model.  In order to discuss the notion of validating and verifying a process model we 

must first define the terms validation and verification.  Our research applies the terms as 

defined by Drusinsky, Michael, and Shing (Drusinsky, Michael, and Shing 2007).  

Validation is an attempt to ensure that the right product is built, that is, the product fulfills 

its specific intended purpose.  Simply stated, validation asks the question, “Did we build 

the right product?”  Verification is an attempt to ensure that the product is built correctly, 

in the sense that the output products of an activity meet the specifications imposed on 

them in previous activities.  Simply stated, verification asks the question, “Did we build 

the product right?”  We leverage the components and capabilities of our chosen formal 

modeling tool to validate and verify statechart-based process models.  

We employ two types of verification in the modeling approach, manual testing 

and runtime execution monitoring.  Each of these uses test cases which are an important 

construct for verifying that the executable version of a process model operates as 

intended.  Test cases are created in one of two ways.  They may be manually generated 

by the process engineer or automatically generated via the StateRover code generation 

module and these two types of test cases are used in the “Manual Testing” and “Runtime 

Execution Monitoring (Automated testing)” steps of our modeling approach, 

respectively.  Both automatically and manually generated test cases represent encoded 

version of testing scenarios.  For the type of partially automated, human-based, C&A 

processes that we are interested in modeling, test cases equate to sequences of real-world 

process related events, conditions, timing, and human decisions.  They allow us to 

examine the response or flow of a process model in a simulated test environment. 
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a. Validation  

Our modeling approach uses three types of validation.  1) Automated 

syntactic validation via algorithms built into our chosen modeling tool which we 

discussed in Section III.C.3.a.  2) Validation of statechart assertions to ensure they 

accurately represent stakeholder requirements 3) Validation against stakeholder 

expectations which requires process engineers to compare the model to requirements 

derived during the “Process Analysis” phase of our approach and to maintain a review 

and feedback loop with process stakeholders.  The intent of validation is to ensure the 

process model remains synchronized with stakeholder expectations throughout the design 

process.  In the Figure 6 overview of our modeling approach, this type of validation is 

represented by dashed lines showing the feedback loop from process model to 

stakeholders. 

b. Verification – Manual Testing 

The process engineer uses manually generated test cases for multiple 

purposes.  During the “Construct Process Model” and “Construct Statechart assertions” 

steps of process model development, he writes manual tests to iteratively ensure 

components of the model behave as expected.  He also uses manual tests to ensure the 

model, as a whole, accurately reflects the process being modeled and that the process 

produces expected results for specific scenarios.  He also builds tests to examine one or 

more portions of the process during development, debugging, or maintenance.  Figure 23 

shows a manually generated test case that represents a testing scenario for the CDIP. 
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Figure 23. Manually Generated Test Case Used in CDIP Verification 

This test case executes a scenario to test flow through the model to ensure 

that specific events and variable settings will cause the model to behave in the way we 

expect.  In this case, we wish to see movement through the entire model via a particular 
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path and termination of model execution if a SystNotSecure() event is detected during the 

operation and monitoring phase of a CDS’ lifecycle. 

c. Verification – Runtime Execution Monitoring 

During the manual testing phase, the process engineer works at a micro 

scale, setting variables and events to an executing process model via handwritten test 

cases.  In contrast, during automated testing he works at the macro scale, adjusting test 

parameters such as number of tests, test length, number of permissible loops or choosing 

between stochastic and deterministic testing algorithms while a white-box test generator 

(WTG) automatically adjusts the micro scale elements at runtime.  He is able to use the 

information from testing to better understand, debug, maintain, and communicate about a 

process model.  The executable version of a process model provides a vehicle for runtime 

execution monitoring.  The medium within which this vehicle operates is the JUnit test 

framework.  By leveraging the JUnit test framework we are able to apply at runtime 

automatically or manually generated test cases against the executable representation of 

our model.  Automatically generated test cases facilitate exploration of all possible 

execution paths available to the executable model and exploration of the effect of 

numerous input sequences on the process model. 
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Figure 24. White-box Test Generator Code Snippet 

StateRover employs an embedded WTG, which is automatically created 

by the code generation model.  The WTG of the CDIP process model is shown in Figure 

24.  This provides the flexibility to generalize and scale the WTG to a wide variety of 

processes.  The WTG is specific to each SUT and is built during automated code 

generation of the executable version of the process model. 
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Table 4. Runtime Execution Monitoring Data Collection  

 Test Run # 

Description of Attributes 

1 2 3 4 

Number of tests per run 5 25 50 100 

Failed assertions     

All states visited     

Time to complete test run 77.5s 398.2s 853.9s 1523.6s 

We use the feedback from testing to help assess and compare things such 

as number of tests per test run, whether assertions failed in a test run, whether or not all 

states were visited during testing, and time to complete each test run.  These factors can 

be tabulated and compared via a table format as shown in Table 4.  A process engineer 

should collect and compare the data necessary to understand, debug, and maintain the 

process model.  In our case, we show Table 4 as an example of the type of data we found 

useful while developing our case studies. 

D. STATEROVER MODELING TOOL 

In this section we provide an overview of how the StateRover modeling tool, in 

conjunction with the JUnit testing framework, can be used to carry out our modeling 

procedure and list some of the technical details and considerations when using the tool.  

As detailed in Section III.A.1, StateRover was chosen because it most closely matched 

the set of desirable attributes for a tool that would facilitate the development of process 

models in our chosen formal language. 
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1. Adding .Jar Files 

When setting up the StateRover for process model development, several key .jar 

files must be added to the Java Build Path found in the project properties as shown in 

Figure 25, circled in red.  Stateroverifacesrc.jar and TReclipseAnimation.jar are included 

with the StateRover plugin and are required for code generation and animation of process 

models created with StateRover.  The files derby.jar, derbynet.jar, and derbyclient.jar are 

required to enable StateRover’s data collection and reporting capabilities via an 

embedded or external data collection facility.  The process engineer uses the “Add 

external JARs” command of the Java Build Path window to add these .jar files as a 

component of the project.  This step needs to be taken for each StateRover project. 

 

Figure 25. Adding Necessary .jar Files to Java Build Path 

2. Setting up the White-box Test Generator 

In order to facilitate white box testing, the process engineer is able to adjust the 

parameters of the white-box test generator (WTG) embedded in StateRover.  These 

parameters are adjusted via the “statechart.properties” file created automatically for each 
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new statechart diagram.  For example, in Figure 26 the “CDIP” statechart properties 

filename is circled in red with its associated WTG properties circled in blue. 

 

Figure 26. Statechart Properties and WTG Parameters 

The “White Box Tester” properties view shown in Figure 26 demonstrates some 

of the adjustable parameters.  In many cases, the default properties applied at code 

generation time are sufficient.  For more advanced or complex process modeling, the 

process engineer has the flexibility to adjust parameters via this mechanism. 

3. JUnit Testing Framework 

JUnit is well suited to the enable automated verification of partially automated, 

human-based, C&A processes.  Conceptually, the JUnit test framework is a pattern-based 
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framework of programs designed to facilitate the testing of software program 

components.  It allows the programmer to write scenarios to be implemented as 

automated JUnit tests.  One of the advantages of this approach is that once tests are 

written they are repeatable, long lasting, and available for use in other testing situations 

or modified versions of the original testing scenarios.  This enables developers to 

iteratively improve both the program under development and the automated tests used to 

ensure that the program functions as desired/required.  Vlissides states that JUnit has 

three primary goals.  One, provide a framework within which developers will actually 

write tests.  Incorporating common developer tools into JUnit does this.  Two, allow test 

writers to create tests that retain their value over time.  JUnit does this through Java based 

test scenarios that, once written, can be understood and used by other process engineers.   

Three, it has to be possible to leverage existing tests to create new ones (Vlissides, 

Johnson, and Edgar 2011).  Again, JUnit facilitates this through Java-based test scenarios 

that, once created, can be used as the basis for additional scenarios.  

In the context of our statechart-based approach to process modeling, the process 

engineer uses the JUnit testing framework to test components of the process model or the 

complete process model.  JUnit provides a vehicle for runtime execution monitoring of 

the StateRover generated executable representation of the process model.   

StateRover fully integrates the use of statechart assertions.  Drusinsky describes 

three ways of applying assertions: as a component of the testing process, as part of a 

simulation, and as a component of runtime execution monitoring (Drusinsky 2006, 229–

230).  All three of these application methods are available through StateRover by 

leveraging an interface with the JUnit framework. 



 64 

THIS PAGE INTENTIONALLY LEFT BLANK 



 65 

IV. CASE STUDIES 

In the previous chapter we explained how our process modeling approach can be 

applied to partially automated, human-based, certification and accreditation (C&A) 

processes.  In this chapter, we provide two case studies to demonstrate the application of 

our statechart-based process modeling approach.   These demonstrative exemplars show 

the utility of our approach. 

The first case study examines the Cross Domain Implementation Process (CDIP) 

and the second examines the Cross Domain Solutions (CDS) Workflow.  Early on in our 

research, the CDIP was being developed by the Unified Cross Domain Management 

Office (UCDMO) as the next-generation process for requesting, developing, 

implementing, and certifying and accrediting a cross domain solution.  We applied our 

process modeling approach to the CDIP.  This effort helped refine our approach.   

During the course of our research, the UCDMO transitioned from the CDIP to the 

CDS Workflow process.  These processes are related in that the CDS Workflow process 

is an evolved form of the CDIP.  When UCDMO transitioned from the CDIP to the CDS 

Workflow as the process responsible for governing the request, development, 

implementation and C&A of cross domain solutions, we began to model the CDS 

Workflow process as well.  This effort provided us with a number of benefits: application 

of our statechart-based modeling approach to two separate processes; fully exercising the 

runtime monitoring capabilities of the modeling approach; and validating the ability to 

apply process requirements as embedded assertions and enforce those assertions on an 

executing model of the process. 

The statechart assertions shown in this chapter reflect the typical hard-to-model 

aspects of requirements on human-based processes.  We demonstrate the modeling and 

V&V of several requirements for each modeled process.  Formalizing all possible 

requirements on each process would not demonstrate anything additional and is 

recommended as future work in Section V.B.3 of this document.  A full-scale 
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implementation of all process requirements would include approximately 120 embedded 

statechart assertions for each modeled process. 

We believe the CDIP and CDS Workflow process are particularly well suited for 

use in experimenting with our approach, given that these processes involve human 

decision making, temporal constraints and restraints, nested sub-processes, workflow 

elements and state changes. 

A. CROSS DOMAIN IMPLEMENTATION PROCESS 

1. Process Selection 

The primary mission of the UCDMO is to support the timely delivery of secure, 

robust, and cost-effective cross domain capabilities and enterprise services that enable 

authorized US Government and strategic partner communities to safely share information 

across security domains (Unified Cross Domain Management Office 2012).  The 

UCDMO has several concurrent initiatives designed to align and federate the 

implementation and support of cross domain solutions (CDS).  The UCDMO recently 

published the following guidance materials on cross domain (CD) implementations of 

information systems—CD Community Roadmap, CD Inventory List, and CD 

Implementation Process (CDIP), all of which are available at the UCDMO Intelink 

website (Unified Cross Domain Management Office 2012).  In this section we show the 

results of applying our modeling approach to the largely human-based CDIP (see Figure 

27), which demonstrates the use of formal methods to specify and reason about a process 

designed to implement cross domain solutions. 
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Figure 27. Cross Domain Implementation Process Informal Diagram 

Encompassed within the CDIP is the Intelligence Community Directive 503 (ICD 

503) C&A process (Director of National Intelligence 2008).  This process is the means by 

which the designated authorities such as the Cross Domain Resolution Board (CDRB) 

decide whether to allow a given CDS to operate.  The UCDMO is not a decision making 

body; rather, it is responsible for the development, coordination, and oversight of the 

CDIP and its successor, the CDS Workflow process.  We view the process for 

developing, implementing, certifying and accrediting cross domain solutions as critical to 

building the evidence necessary for decision makers to weigh the risks of operating a 

given CDS and to make the accreditation decision for the system. 

2. Process Analysis 

In the second step on the road to building a formal, statechart-based process 

model, thorough analysis helps us develop a better understanding of the process under 

examination.  This analysis begins by gathering all available information related to the 

process.  In the case of the CDIP, the process was still in the formative stages and the 

available documentation consisted of the informal flowchart shown in Figure 27 and 
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several conceptual PowerPoint presentations attributable to members of the UCDMO 

team responsible for developing the CDIP (Unified Cross Domain Management Office 

2008). 

The CDIP is designed as a process that is easy for humans to understand and 

follow.  Historically, the field of formal methods was born out of a need to rigorously 

specify and then perform verification and validation on systems, especially in the case of 

security- and safety-critical systems (Monin and Hinchey 2003).  Formal methods tools 

and techniques are based on mathematical theories.  One of the challenges of formally 

modeling a process designed for humans is capturing those portions of the process that 

involve subjective human activities like evaluation and decision making. For example, 

Step 1 “Authorize Request” of the CDIP demonstrates the subjective nature of the 

process (see Figure 28). In this step, a newly initiated cross domain request form (CDRF) 

must be validated and authorized or rejected by a human within the requestor’s 

agency/service CD office—a human-centric activity.  Such activities need to be formally 

specified within the context of the process and we do so using the diamond-shaped visual 

switch artifact shown in Figure 28. 

 

Figure 28. CDIP Step 1 “Authorize Request” 
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Our analysis revealed that the CDIP is a more complicated process than the 

flowchart of Figure 27 makes it appear.  In fact, after evaluating the available 

documentation, we found the CDIP to be a complex, multi-threaded, multi-layered, 

temporally constrained process. 

As prescribed by our process modeling approach, we identified individual threads, 

decision points, and key elements for translation to the type of statechart artifacts used 

when building StateRover models (e.g., states, visual switches).  Of note, the list of 

identified threads only includes those inherent to the process; we do not include instances 

of threads used as an enabler for embedded assertions. 

a. Threads 

During Step 5 – Certification Test, a system is laboratory tested for 

compliance with mandated security requirements.  If a system passes this testing phase it 

then moves to Step 6 – Implement.  At the same time as a system proceeds to Step 6 – 

Implement it is evaluated as to whether it should be included in the CD Baseline Systems 

list.  This evaluation proceeds independent of and concurrent with the system’s 

implementation and subsequent site testing and therefore fits our criteria for identification 

as a thread. 

b. Decision Points 

As described in Section III.C.1 we use Table 5 to manage and track 

decision points for inclusion in the process model. 
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Table 5. CDIP Decision Points 

Description Variable Name Possible 
Values 

In 
Model 

Decide whether CDS requestor is a DoD 
component. 

bIsDod True, false ☒ 

Determine whether capability exists as 
an enterprise or centralized capability. 

bEntOrCentCapaiblity True, false ☒ 

Decide how to transition a CDS based 
on the associated level of change 

iClassOfChange 1, 2, 3 ☒ 

Decide whether to initiate an appeal if 
CDS request is denied. 

bInitAppeal True, false ☒ 

Should CD request form (CDRF) move 
forward through process after CDRB 
review? 

bCDRF_Proceed True, false ☒ 

Does CDRF need to be revalidated after 
CDRB review? 

bCDRF_Revalidate True, false ☒ 

Does the CD capability already exist in 
a fully implemented version? 

bCapabilityExists True, false ☒ 

Can an existing CD capability be 
modified to meet the requirement? 

bModifyCapability True, false ☒ 

Is a completely new CDS required in 
order to meet the requested need? 

bNewCapability True, false ☒ 

Based on results of laboratory security 
test, decide whether to move CDS to 
next step of CDIP. 

bProceedFwd True, false ☒ 

Decide whether to add CDS as a 
baseline system. 

bAddToBaseline True, false ☒ 

Decide how to proceed based on results 
of ST&E. 

bSTE_Successful True, false ☒ 

What is the result of the accreditation 
process? 

bAccredCD True, false ☒ 

c. Layers 

The CDIP is composed of processes and sub-processes.  Therefore, we 

used statechart hierarchy when building the model.  We determined that two levels of 
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hierarchy are required in order to accurately capture the nested processes within the 

CDIP.  In the diagram of Figure 27, each of Step 3 – Community Approval Via CDRB, 

Step 5 – Certification Test, Step 6/7 – Implement / Site Security Testing, and Step 8 - 

Accreditation were of sufficient complexity to warrant individual articulation as a nested 

process. 

3. Construct Process Model 

In this section, we bring together the results of process selection and analysis to 

articulate the formal process model of the CDIP.  The diagrams of Figure 29 and Figure 

30 show the right and left halves of the top-level view of the full process model.  We 

have split this diagram into two figures for clarity. 
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Figure 29. Top-Level View of Final CDIP Process Model (Right Half) 
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Figure 30. Top-Level View of Final CDIP Process Model (Left Half) 
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However, model development was an iterative process.  By taking advantage of 

our chosen modeling tool’s code generation capability and inherent semantic compliance 

checking routines, we were able to use a build-and-check approach to iteratively 

constructing the model.  The CDIP is a stepwise design, lending itself to building and 

testing in sections.  Throughout model development and with the addition of each new 

step we take two actions designed to ensure the model adheres to the underlying rules for 

semantic correctness: (i) Use the “Diagram/Validate” menu option to initiate 

StateRover’s validation routine and reveal detected errors and (ii) initiate the code 

generation process.  As detailed in Chapter III, diagram validation and code generation 

provide an end-to-end syntactic and semantic check of the model and identify errors.  

Multiple types of errors could be detected through this process such as mistakes made by 

the stakeholders in the formulation of the natural language representations of the process 

and its requirements which get built into the model by the process engineer, errors by the 

process engineer when translating the natural language into the model and its assertions, 

or mistakes by the process engineer when creating the model (e.g., sink states, loops). 

As shown in Figure 31, we initially constructed Steps 0, 1, 2, and a placeholder 

coarse-state for Step 3 (outlined in green).  The visual switch transition [true] from 

bEntOrCentCapability to Step2 – Process_Request will go to Step 4A – 

Designate_Enterprise_Service in the final version of the model.  However, in order to 

pass the syntactic check for both true and false transitions from a visual switch we 

temporarily route the [true] transition (outlined in red) to Step2 – Process_Request as 

shown in Figure 31.  On the right hand side of state Steps_0_1 we positioned a 

placeholder thread, named assertion_thread, which will contain the embedded assertion 

to be placed later in the modeling process. 
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Figure 31. CDIP Steps 0 - 3 Top-level View During Model Development 

Next, we constructed the detailed view of Step 3 (Figure 32).  The capability to 

display Step 3’s single coarse-state placeholder on the diagram of Figure 31 and expand 

that view as shown in Figure 32, demonstrates one of the benefits of hierarchy, that is, 

adjusting the depth and complexity of the view as needed.  Step 3 is characterized by a 

number of questions that must be answered in order to properly route a CDS request into 

the appropriate path for the next step of the process.   
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Figure 32. Step 3–Community_Approval_Via_CDRB 

The three visual switches on the right hand side of Figure 32 represent human 

decisions that determine whether: (i) the requested capability already exist within the 

inventory; (ii) an existing capability can be modified to meet the stated requirement; or 

(iii) authority and funding for development of a new capability is approved in order to 

meet the requirements of the CDS request.   Depending on the answer to each of these 

questions (i.e., true or false) the process will transition to the appropriate section of Step 4 

as designated on the far right hand side of Figure 32 by the off-page references 

to_Step4B, to_Step4C, and to_Step4D.  If it is determined that there is no way to proceed 

forward with developing or acquiring the requested CDS capability then the process 

transitions back to the top-level statechart via Reassess_return_Step_1-1. 

After constructing Step_3 we once again run the validation and code generation 

routines to iteratively ensure the model is semantically and syntactically correct.  We do 

this at each stage of model development. 
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Figure 33. CDIP Top-level Development of Steps 4, 5, and 6/7 

The top-level view of Step 4(a, b, c, d), Step 5, and Step 6/7 is shown in Figure 

33.  Again we use coarse states for those steps that will be further articulated as sub-

processes Step 5, Step 6/7, and Step 8.  The detailed view for each of these steps is shown 

in Figure 34, Figure 35, and Figure 36, respectively.  
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Figure 34. Step 5 – Certification Test 

In Step 5 – Certification Test there are two statechart threads.  This construct, in 

conjunction with the transition connector artifact (outlined in red in Figure 34) permits 

the process engineer to enable interaction and transitions between concurrent activities 

within a process.  In this case, after security testing is complete and a decision has been 

made to proceed forward with implementing and site testing a CDS, the process also calls 

for a review of the system to decide if it should be added to the CDS baseline. 
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Figure 35. Step 6/7 – Implement and Perform Site Security Testing 
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Figure 36. Step 8 – Accreditation Decision 

After the construction of each step we validate and generate code to ensure that 

the model is error-free.  If the model is not error-free, the process engineer makes 

corrections as required and then validates the model and generates code again.  This 

process continues until each new section of the model is error-free.   
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Figure 37. CDIP Top-level View Steps 9, 10 

Next, we constructed the final portion of the top-level model, including Step 9 and 

Step 10 (see Figure 37).  From a process engineering perspective, we made a design 

decision to place Step 9 in the top-level of the model.  This helps demonstrate the 

flexibility and scalability of the modeling approach.  If placing Steps 9 and 10 in the top-

level had significantly increased the difficulty of understanding the model or following its 

flow then we would have been able to represent it as a coarse state at the top-level and 

fully articulate it in a separate substatechart as we did for Steps 3, 5, 6/7, and 8.  On the 

right hand side of state Step 9 – Operate_and_Monitor we positioned a placeholder 

thread, named Op_Mon_assert_thread that will contain the embedded assertion to be 

placed later in the modeling process. 

4. Construct Statechart Assertions 

In this section we show two embedded statechart assertions, each designed to 

model and enforce a different natural language requirement.  This demonstrates the 

technical feasibility of applying statechart embedded assertions to the type of partially 

automated human-based C&A processes modeled with our approach.   
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The statechart assertion of Figure 38 is a formal specification of the natural 

language requirement R1: Local approval authority/authorities must ensure that there is 

a valid operational need for CDS. 

 

Figure 38. Statechart Assertion for Requirement R1 

The statechart assertion of Figure 39 is a formal specification of the natural 

language requirement R2: the CDS implementation must remain secure during the 

“operate and monitor” phase of its lifecycle. 
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Figure 39. Statechart Assertion for Requirement R2 

a. Validating Statechart Assertions 

As described in Section III.C.4.b, we use a pattern-based testing 

methodology to help build a body of evidence that our assertions correctly represent the 

intended behaviors.  Figure 40 shows an example of a testing scenario for the assertion of 

Figure 38 to test the obvious success pattern. 

 

Figure 40. Timeline Diagram for “obvious success” Assertion Test Scenario 
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This is a trivial case but important not to overlook.  Using this 

methodology, on several occasions throughout the development process we found the 

need to make corrections based on test results from pattern-based testing scenarios.  For 

example, in the statechart assertion of Figure 38 we initially reversed the placement of 

the LCDO_Reject() and LCDO_Accept() events on their respective transitions.  The 

trivial obvious success based test pattern revealed this error, demonstrating the value of 

exposing process models to a wide range of test scenarios from trivial to complex. 

5. Embed Assertions in Process Model 

In the next phase of our process modeling approach we embed the statechart 

assertions into the process model.  As discussed in Section III.C.5 of this document, the 

process engineer places embedded statechart assertions within the model based on the 

desired scope of the assertion. 

The statechart assertion of Figure 41 is only applicable to activity modeled in 

state Steps_0_1; therefore, to keep it appropriately scoped we have embedded it in a 

thread via the substatechart artifact of our chosen modeling tool as shown in Figure 38. 

 

Figure 41. Steps_0_1 with Embedded Statechart Assertion 
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The statechart assertion for R2, shown in Figure 39, is only applicable to the 

activities and events occurring in Step 9 so it has been embedded within a thread (see 

Figure 42) of this state to maintain the appropriate scope. 

 

Figure 42. Step 9—Operate_and_Monitor – with Embedded Assertion 

6. V&V Process Model 

a. Validation 

In the validation component of our modeling approach, the process 

engineer presents the finalized model to process stakeholders to ensure the model meets 

the expectations and requirements of stakeholders.  This interaction is depicted in Figure 

6 by the dashed line from V&V Process to Process Stakeholder Expectations.  It 

represents a key portion of the feedback loop with stakeholders and facilitates validation 

of the process model.  For the purposes of demonstrating the feasibility of this component 

of our modeling approach, we worked directly with the UCDMO to ensure the completed 

process model met their expectations.  We presented diagrams of our formal model, like 

those presented in this chapter, and discussed the translation process from UCDMO 

supplied process documentation to the process model.  Through informal discussion we 
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asked questions about components of the model to ensure that we fully understood and 

had correctly translated stakeholder intent and requirements into the process model. The 

UCDMO personnel asked questions such as inquiring how the concurrent activities in 

Step 5 would be handled by our modeling approach and whether requirements 

enforcement through assertions could be designed into a long-term process monitoring 

system.  Long-term process monitoring is an open research question that we propose as 

future work in Chapter V of this document. 

b. Verification – Manual Testing 

For manual testing, the process engineer writes Java-based test scripts that 

enact the scenarios he desires to test.  Figure 43 shows a manually generated test case just 

after a test run with a failed assertion.  The green outline contains commands used to 

initiate events and set variables in the process model being tested.  Our chosen modeling 

software provides two types of feedback from the testing process.  The red outline shows 

messages from the executing model and in this case shows the red status message, 

“System found NOT SECURE, take corrective action,” which is generated by the 

statechart assertion CDIP_OP_Mon_Assertion_Statechart upon assertion failure.  The 

blue outline shows JUnit reporting on failed assertions.  This type of testing and the 

associated status messages from the model’s embedded statechart assertions and JUnit 

demonstrate the means by which we are able to ensure process requirements, represented 

by statechart assertions, are enforced at runtime. 
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Figure 43. Manual Testing Example – Failed Assertion 

Figure 44 shows a similar test scenario but this one is set up to ensure the 

embedded assertion of Figure 39 succeeds when we expect it to.  In this case, we have 

removed the line CDIP_Test.SysNotSecure(); so the commands in the green outlined area 

do not drive the statechart assertion, CDIP_OP_Mon_Assertion_Statechart, to a failure 

condition.  Since the assertion did not fail, the red outlined area does not show a failure 

message from the statechart assertion.  The blue outlined area has a green bar, indicating 

that no assertions failed. 
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Figure 44. Manual Testing Example – Successful Assertion 

The test cases we have shown demonstrate one of the methods by which 

we ensure that a process model behaves exactly as expected under specific conditions.  

The other method is through automated testing via runtime execution monitoring. 

c. Verification – Runtime Execution Monitoring 

Runtime execution monitoring provides the process engineer with a means 

of exploring the effect of numerous input sequences on the process model during 

automated testing.  The process engineer is able to adjust test parameters such as number 

of tests, test length, and number of permissible loops, in addition to using the information 

from testing to better understand, debug, maintain, and communicate with other 

engineers, the users, and the stakeholders about a process model.   

Figure 45 and Figure 46 show a portion of the final results of two WTG 

tests runs on the CDIP process model.  In this case, we set the number of tests to 50 and 

we are provided with feedback from the model (e.g., the output of println() statements 

embedded in the model), a listing of states within the model that were not entered during 



 89 

the test run, and a specific listing of which tests encountered one or more failed assertions 

(i.e., “47-failed tests” in Figure 45 and Figure 46).  During automated testing with a large 

number of test runs, we expect most of the tests to have failed assertions since the WTG 

explores the possible paths for given set of inputs.  Depending on what we are attempting 

to test in an automated test run, it may or may not be acceptable to have states not visited 

during test.  For instance, if we wish to determine if the embedded statechart assertions 

fail and succeed for a given set of events and variables we may be able to accomplish this 

without visiting all states.  If we wish to ensure that all states of the model are reachable 

from an input sequence then we would likely increase the number of test runs to ensure 

enough input sequences are presented to the executing model to fully visit all states.  

 

Figure 45. CDIP Test Results Example 1 
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Figure 46. CDIP Test Results Example 2 

Figure 47 shows a portion of the statechart animation results produced 

during the test run of Figure 45.  During model development, we use the textual and 

graphical feedback to debug the model and to ensure that the model behaves as expected 

under a wide variety of input scenarios.   
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Figure 47. Graphic Feedback for CDIP Test Results Example 2 

Visual test feedback helps the process engineer to better understand, 

develop, debug, and maintain the type of C&A processes we are interested in modeling.  

In addition, because visual representations are generally easier for humans to understand, 

they facilitate communication about the process under evaluation among users, 

stakeholders, and process engineers. 

Table 6. Runtime Execution Monitoring Data Collection 

 Test Run # 

Description of Attributes 
1 2 3 4 

Number of tests per run 5 25 50 100 

Failed assertions     

All states visited     

Time to complete test run 15.9s 88.2s 144.2s 346.5s 
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As described in Section III.C.6.c, the data shown in Table 6 provided a 

means of comparing state visitation coverage and processing time across test runs.  For 

this 100-test run the single flowchart box Do_Not_Add_CD_System_to_Baseline was the 

only state/flowchart box not visited.  This prompted us to go back and review that portion 

of the model to ensure the results didn’t indicate a problem with the model.  In this case, 

the location of the Do_Not_Add_CD_System_to_Baseline flowchart box was such that 

the results made sense due to the location of the box relative to the flow of the model 

during automated testing.  

B. CROSS DOMAIN SOLUTION WORKFLOW PROCESS 

1. Process Selection 

The CDS Workflow replaced the UCDMO’s CDIP with the former representing a 

process-based initiative to federate the request, reuse, development, implementation, and 

C&A of cross domain solutions.  The CDS Workflow is a more complex process than its 

predecessor with five major process blocks and four levels of hierarchy.  As the successor 

to the CDIP, this is now the process by which designated authorities such as the Cross 

Domain Resolution Board (CDRB) decide whether to allow a given to CDS operate. 

2. Process Analysis 

In an effort to better document the CDS Workflow process, the UCDMO captured 

elements of it as UML use case (see Figure 48) and activity diagrams (see Figure 49) 

developed in Rational Rose Modeler5.  The use case and activity diagrams were a starting 

point for analyzing and understanding the process, which facilitated the analysis phase of 

our modeling approach. 

                                                 
5 Rational Rose is a commercial UML modeling tool developed by IBM.  Additional information is 

available at http://www-01.ibm.com/software/awdtools/developer/rose/modeler/. 
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Figure 48. CDS Use Case Diagrams 

The activity diagram shown in Figure 49 is for a sub-process of the larger CDS 

Workflow process.  Activity diagrams are UML artifacts and the process of translating 

them is generally straightforward since activity diagrams can be directly translated to 

statecharts (Bruegge and Dutoit 2004, 62–67).  Each activity diagram represents a sub-

process within the overall CDS Workflow.  Thus one of the challenges was to develop an 

understanding of how the different activity diagrams related to each other in terms of 

processes, sub-processes, and sequencing in order to provide us with the necessary 

information to build a model reflective of the actual CDS Workflow.  Most of the CDS 

sub-processes had been documented in activity diagrams.  However, the only 
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documentation for the “Operate and Monitor” sub-process was a single point on the use 

case diagrams of Figure 48.  This prompted us to hold further discussions with the 

UCDMO representatives in order to determine the flow, elements, and desired behaviors 

of this sub-process.  This demonstrates one of the challenges of applying formal methods 

tools and technique to processes operating in real-world environments. 

The use case diagrams of Figure 48 were particularly helpful for developing the 

proper sequencing of sub-processes within the overall CDS Workflow. 

 

Figure 49. Activity Diagram for Sub-Process Titled “Initiate Reqest” 

As prescribed by our process modeling approach, we identified individual threads, 

decision points, and key elements for translation to the type of statechart artifacts used 

when building StateRover models (e.g., states, visual switches). 

a. Threads 

The CDS Workflow is a complex process with several sub-processes that 

have concurrent activities occurring.  As discussed in Section III.A.a, we model 

concurrent activity using the statechart thread construct. 
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The vertical or horizontal parallel lines in an activity diagram denote 

swimlanes which provide a way to group activities performed by the same actor or to 

group activities in a single thread (Ambler 2005).  We observed that in the UCDMO 

diagrams, groups of related activities have been grouped together within swimlanes, with 

some of these activities happening concurrently.  We translated the swimlanes in each 

activity diagram to threads within appropriate states in the process model. 

Using this approach, the activity diagram of Figure 50 shows two separate 

sets of activity.  This will be modeled with two separate threads. 

 

Figure 50. Initiate Request Activity Diagram 

On the right hand side of Figure 50, Review Request (+) represents the 

sub-process shown in Figure 51.  This activity diagram uses horizontal swimlanes to 

denote grouped activities; however, concurrent activities are taking place within each set 

of swimlanes.  In this case, we model the activities within each set of swimlanes in a 



 96 

single state and use three threads and four threads for the top and bottom sets of 

swimlanes, respectively, to separate concurrent activity. 

 

Figure 51. Review Request Activity Diagram 

The Process CDS Request activity diagram of Figure 52 shows that 

processing a CDS request involves four separate sets of activities.  We model this with 

four separate threads. 
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Figure 52. Process CDS Request Activity Diagram 
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Figure 53. Implement CDS Request Activity Diagram 
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Implementing a CDS has five separate sets of activity occurring, as shown 

in Figure 53.  We model this with five separate threads. 

b. Decision Points 

Next, we examine the CDS Workflow process to determine decision 

points and use Table 7 to manage and track them. 

Table 7. CDS Workflow Decision Points 

Description Variable Name Possible 
Values 

In 
Model 

Decide whether new network 
connection is required to satisfy CDS 
request. 

bNewNetConnectRqrd True, false ☒ 

Did CDS requestor enter all necessary 
data on CDS request? 

bAllDataEntered True, false ☒ 

Is CDS requirement valid (CD Officer 
Validator)? 

bValidatedRqrmt True, false ☒ 

Has all technical information on CDS 
request been verified? 

bTechInfoVerified  ☒ 

Decide whether the “best-fit” CDS 
meets the requested requirement. 

bCanMeetReq True, false ☒ 

Does the “best-fit” CDS require 
modification to meet requirements? 

bisModRqrd True, false ☒ 

Does CDS decision-making body agree 
with recommendations and findings? 

bAgreeRecommFind True, false ☒ 

Does CD Officer Validator accept 
recommended issue resolution? 

bAcceptRes True, false ☒ 

Can threshold requirements be met with 
proposed configuration? 

bThrshldRqrmtsMet True, false ☒ 

Do technical issues prevent meeting the 
requirement? 

bTechIssues True, false ☒ 

After reviewing risk assessment, does 
CDS have interim approval to connect 
for testing? 

bIntApprovConnctTstng True, false ☒ 

Are certification, testing, and evaluation 
required? 

bCTE_Req True, false ☒ 
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Description Variable Name Possible 
Values 

In 
Model 

Did CDS pass offline testing? bPassOfflineTest True, false ☒ 

Is approval granted to connect 
implemented CDS to network(s)? 

bApprovetoConnect True, false ☒ 

Is CDS outside of risk threshold? bOutsideRiskThresh True, false ☒ 

c. Layers 

The CDS Workflow is composed of processes and sub-processes.  Upon 

analyzing the process we determined that it would be best to represent the process using 

four levels of hierarchy.  Each of the “Initiate Request,” “Process Request,” “Implement 

CDS,” and “Operate and Monitor” sub-processes were of sufficient complexity to 

warrant individual articulation as a nested process at a second level of hierarchy.  In 

addition, the “Review Request” sub-process of “Initiate Request” was sufficiently 

complex for individual articulation at a third level of hierarchy. 

3. Construct Process Model 

In this section, we bring together the results of process selection an analysis to 

articulate the formal process model of the CDS Workflow.  The diagram of Figure 54 

shows the top-level view of the final process model. 
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Figure 54. Top-level Statechart Model of CDS Workflow Process 
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Throughout model development and with the addition of each new step we 

perform two actions designed to ensure the model adheres to the underlying rules for 

semantic correctness: (i) Use the “Diagram/Validate” menu option to initiate 

StateRover’s validation routine and reveal detected errors (ii) initiate the code generation 

process.  As detailed in Chapter III.C, the diagram validation and code generation provide 

an end-to-end semantic check of the model and identify errors. 

For this process, our analysis indicated that the top-level of the model would be 

relatively simple in terms of the number of states and transitions.  We initially 

constructed the model shown in Figure 55.  This portion of the model ended up being 

very close to the final top-level view. 
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Figure 55. CDS Workflow Top-level View During Model Development 
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Next, we constructed in turn each of the detail views for the Initiate_Coarse, 

Process_Coarse, Implement_Coarse, and OpMon_Coarse states of Figure 55. 

The detail view of Initiate_Coarse is shown in Figure 56.  The middle thread is a 

placeholder for an embedded statechart assertion to be placed later in the modeling 

process.  Just as occurred when constructing the CDIP process model, we run the 

validation and code generation routines at each step of model building to iteratively 

ensure the model is semantically and syntactically correct.  We do this at each stage of 

model development. 

 

Figure 56. Initiate_Coarse 

The right hand thread contains a coarse state, Review_Request, the details of 

which are shown in Figure 57.  This sub-process is fully contained within the 

Initiate_Coarse state and therefore decomposes to the third level of hierarchy.  We 

discussed complexity and layering in Chapter III of this document.  Modeling of the 

second and third levels of hierarchy in this manner is an example of how we are able to 

drill down to successively finer levels of detail within the process model in order to deal 

with complexity. 
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Figure 57. Review_Request 
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Next we constructed the detailed view of state Process_Coarse.  This state has 

four separate threads, seven decision points, a mix of workflow and statechart elements, 

and a number of transitions between the threads.  It was the most complex sub-process 

that we had modeled.  Running the validation and code generation routines was 

particularly helpful to ensure the semantic and syntactic correctness as we iteratively built 

it.  The detailed view of Process_Coarse is shown in Figure 58. 
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Figure 58. Process_Coarse 
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The next state modeled was Implement_Coarse.  This sub-process has five threads 

and four decision points.  As with the previous sub-process, our modeling approach of 

iterative validation and code generation helped us rapidly construct this portion of the 

model with no syntactic or semantic errors.  This sub-process is shown in Figure 59. 
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Figure 59. Implement_Coarse 
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The final detail view developed was for OpMon_Coarse sub-process.  The 

detailed view of OpMon_Coarse is shown in Figure 60. 

 

Figure 60. OpMon_Coarse 

We intend to embed a statechart assertion in OpMon_Coarse later in the modeling 

process so we have positioned a placeholder thread to be filled in during the “Embed 

Assertions in Process Model” phase of our modeling approach. 

4. Construct Statechart assertions 

In this section we show three embedded assertions statecharts, each designed to 

model and enforce a different natural language requirement.  This demonstrates the 

technical feasibility of applying statechart embedded assertions to the type of partially 

automated human-based C&A processes modeled with our approach. 
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The statechart assertion of Figure 61 is a formal specification of the natural 

language requirement R1: Each of the impact levels (Confidentiality, Integrity, 

Availability) must be set to one of the following: low, moderate, high. 

 

Figure 61. Statechart Assertion for Requirement R1 

The statechart assertion of Figure 62 is a formal specification of the natural 

language requirement R2: Review of the CDS request must be completed within 100 time 

units of the time review begins.  This statechart assertion demonstrates the ability to apply 

enforceable temporal constraints to our model. 

 

Figure 62. Statechart Assertion for Requirement R2 
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The statechart assertion of Figure 63 is a formal specification of the natural 

language requirement R3: The CDS implementation must remain secure during the 

“operate and monitor” phase of its lifecycle. 

 

Figure 63. Statechart Assertion for Requirement R3 

5. Embed Assertions in Process Model 

The next step in our process modeling approach is to embed the statechart 

assertions into the process model.  As discussed in Section III.C.5 of this document, the 

process engineer places embedded statechart assertions within the model based on the 

desired scope of the assertion. 

The statechart assertion of Figure 64 is only applicable to activity modeled in 

state Requestor_Initiate; therefore, to keep it appropriately scoped it is embedded in a 

thread within this state via the sub-statechart artifact of our chosen modeling tool as 

shown in Figure 65. 



 113 

 

Figure 64. State Requestor_Initiate with Embedded Assertion 
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The statechart assertion for R2, shown in Figure 62, is only applicable to the 

activities and events occurring in state Assess_Request so it has been embedded within a 

thread (see Figure 65) of this state to maintain the appropriate scope. 

 

Figure 65. State Assess_Request with Embedded Statechart Assertion 

The statechart assertion for R3, shown in Figure 63, is only applicable to the 

activities and events occurring in state Op_Monitor so it has been embedded within a 

thread (see Figure 66) of this state to maintain the appropriate scope. 
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Figure 66. State Op_Monitor with Embedded Statechart Assertion  

6. V&V Process Model 

a. Validation 

The process engineer presents the finalized model to process stakeholders 

to ensure the model meets the expectations and requirements of stakeholders.  This 

interaction is depicted in Figure 6 by the dashed line from V&V Process to Process 

Stakeholder Expectations.  It represents a key portion of the feedback loop with 

stakeholders and facilitates validation of the process model.  For the purposes of 

demonstrating the feasibility of this component of our modeling approach, we worked 

directly with UCDMO to ensure the completed process model met their expectations. 
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We presented our model to the UCDMO in a similar fashion to what we 

described in Section IV.A.6.a for the CDIP.  We informally presented diagrams of the 

formal model and discussed the translation process from UCDMO supplied process 

documentation to the process model.  The resulting dialogue provided validation that our 

design met stakeholder intent.  We used this feedback loop to ensure that the “Operate 

and Monitor” component of the model, mentioned in Section IV.A.2 met the UCDMO 

expectations.  Due to the lack of documentation available for analysis of “Operate and 

Monitor” it was particularly helpful to have direct input from the process stakeholders to 

improve the process model. 

b. Verification – Manual Testing 

We use the same process for manual testing as described for the CDIP in 

Section IV.A.6.b of this document.  Manual testing allows the process engineer to focus 

on and test specific scenarios to examine how a given set of variable values, timings, and 

events will affect the model during execution.    In this section we use manually 

generated test cases to demonstrate how statechart assertions embedded in the CDS 

Workflow enforce requirements on the process model. 

The test case shown in Figure 67 is designed to test the assertion 

CheckImpactLevelsAssertion to ensure that the assertion does not fail when it should 

succeed.  This assertion, shown in Figure 61 is designed enforce the natural language 

requirement R1: Each of the impact levels (Confidentiality, Integrity, Availability) must 

be set to one of the following: low, moderate, high.  In the green outlined area of Figure 

67, we assign values of High, High, and Low to the Confidentiality, Availability, and 

Integrity impact levels, respectively.  In the red outlined area of Figure 67, the message 

“Impact Levels Assertion Entered” shows that the assertion was entered while the blue 

outlined area shows that no assertions failed during the test run. 
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Figure 67. Successful Manual Test of CheckImpactLevelsAssertion  

For those test runs with animation activated, our modeling tool provides 

additional visual feedback as shown in Figure 68.  In this case the assertion’s failure 

criteria were not met so the statechart assertion remained in the Start state throughout the 

test run. 

 

Figure 68. Assertion CheckImpactLevelsAssertion Successful Test Run 
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The next test results show the indicators for a failed test run.  In Figure 69, 

the green outlined area shows that we set the Integrity impact level to “not_set.”  This 

caused the CheckImpactLevelsAssertion embedded assertion to fail and print the status 

message “One or more impact levels have not been set.” in the red outlined area and to 

throw an AssertionFailedError in the blue outlined area of Figure 69. 

 

Figure 69. Failed Manual Test of CheckImpactLevelsAssertion 

In the lower portion of Figure 70, we see a transition from the Start state 

to the Assert_Fail flowchart box and on to a terminal state.  This occurred because one of 

the impact levels was not set in the CDS Workflow model, causing a transition to the 

flowchart box Levels_Not_Set which is shown by the orange outlined box in the upper 

portion of Figure 70.   
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Figure 70. Assertion CheckImpactLevelsAssertion Failed Test Run 

When we write manual test cases, we are able to test process flow and 

adherence to process requirement written as embedded assertions by specifying events 

and setting variables to move through the executing process in a specific way.  This 

ensures that the model behaves as expected for each test scenario. 
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c. Verification – Runtime Execution Monitoring 

In this section we show the results of automated testing of the CDS 

Workflow process model.  Runtime execution monitoring provides a means of exploring 

the effect of numerous input sequences on the process model during automated testing 

and verifying that the model behaves as expected across the range of inputs.  During 

model construction we insert code to print variable values and status messages at runtime.  

These messages are delivered throughout execution of each test.  This helps us ensure 

that the model behaves precisely as specified since we are able to compare variable 

values for a test run to the testing results based on those values.  An example of this can 

be seen in the blue outline of Figure 71.  The Confidentiality impact level is “not_set” 

which should cause the assertion CheckImpactLevelsAssertion to fail and it does, as we 

see from the status message in red “CheckImpactLevelAssertion: One or more impact 

levels have not been set.” 



 121 

 

Figure 71. WTG Output for 50-Test Run 

Depending on our testing goals and the outcome of test runs, we adjust test 

parameters such as number of tests, test length, number of permissible loops in order to 

ensure all elements that we wish to examine have been tested.  The green outline of 

Figure 71 shows us that all three of the assertions in our model failed during this 50-test 
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run.  We expect this to occur as the WTG explores the execution paths for a large number 

of input sequences over the course of fifty tests.  

C. KEY LESSONS LEARNED 

As we developed the CDIP and CDS Workflow models there were some key 

lessons learned that will facilitate the improvement of further research into the modeling 

of partially automated human-based security-related processes. 

1. Code Generation 

The code generation facility turned out to be a key means of ensuring end-to-end 

syntactic and semantic consistency of our model.  Note that during model development 

we do not focus on code generation from the standpoint of creating usable code as would 

be the case when developing software-based systems.  Instead, we are interested in the 

rigorous syntax and semantics checking that is an inherent part of StateRover’s code 

generation module.  If code generation is unable to complete successfully this equates to 

a syntactic or semantic inconsistency with the model and drives the process engineer to 

investigate and correct the source of the error before continuing with model development. 

2. Source Material 

During the “Process Analysis” phase of our modeling approach, the process 

engineer develops an understanding of the process under examination based on the 

materials provided by the stakeholders of the process.  This material may be abundant or 

scarce and could include things such as interviews with users or stakeholders, focus 

groups, informal diagrams, or semi-formal diagrams.  We modeled two processes during 

the course of this research.  The source material differed significantly between the two 

processes and we found in the case of the CDS Workflow that having the UCDMO 

provided activity diagrams and use cases facilitated our understanding of model. 

If provided a similar set of activity diagrams for any process, it would facilitate an 

expeditious analysis of the process.  However, the notion of “garbage in, garbage out” 

applies here.  In other words, if it is the case that either the process diagrams or 
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documentation is inaccurate or incomplete, we believe that analysis could end up taking 

longer or result in unfounded conclusions due to the original diagrams leading the 

analysis down one or more false paths.  Process diagrams are not a requirement for 

analysis but instead a facilitator.  In the absence of diagrams or other forms of 

documentation, the process engineer engaged in formalizing a process is likely to employ 

a variety of methods to develop a full understanding of the process such as observation of 

the process in action, and interviews with stakeholders.  Based on our experience with the 

two processes modeled in this work, we suggest that inaccurate, inconsistent, or non-

existent process documentation would significantly increase the process-analysis timeline 

due to the need for end-to end-process analysis. 
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V. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 
WORK 

A. CONCLUSIONS 

In this research, we demonstrated the development of a systematic approach to 

formally modeling human-in-the-loop security analysis and decision-making processes as 

well as the use of UML statecharts and statechart assertions for engineering, modeling, 

and V&V of these processes.  The contributions described below support this research. 

1. Software Engineering 

We contributed to software engineering by introducing a novel way for software 

to automate a new domain, that being the process-modeling engineering of high-level, 

human-based processes.  We do this through the generation of an executable process 

model and executable assertions.  We then use software to enact these executable 

representations as a means of process automation.   

2. Process-modeling Engineering 

We developed a systematic approach to formally modeling, validating and 

verifying high-level human-based processes (shown in Figure 72).  These processes can 

be challenging to model because of hard-to-capture elements such as human decision-

making, sequencing, and concurrent activities.  We applied some of the tools and 

techniques from software engineering to provide an end-to-end means of modeling and 

V&V of these processes using the same formalism.  This provides a framework for the 

specification of security processes and computer-assisted V&V of the specifications.  
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Figure 72. Statechart-Based Formal Modeling Approach 

We developed a set of desirable attributes to guide the choice of a formal 

language and associated computer-based tools that would support our modeling 

approach.  We examined a number of formal languages and tools in the context of these 

attributes and showed that UML statecharts and statechart assertions in conjunction with 

the tools available for this formal language provide us with the necessary vehicle for 

building a formal process model as well as specifying and enforcing requirements on the 

model. 

Our approach includes development of an executable version of the modeled 

process and the process requirements models as statechart assertions.  Once developed, 

this executable model provides us with a runtime view of the process.  We use formal 

methods tools and techniques originally designed for the engineering of reactive 

hardware and software systems as a means to monitor the process in execution for 
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requirements satisfaction.  The addition of runtime monitoring, in conjunction with 

embedded statechart-based assertions, offer the process engineer an unprecedented ability 

to levy requirements on a human-based process and enforce those requirements while the 

process is in execution. 

3. Case Studies 

We demonstrate the application of our systematic modeling approach through two 

case studies.  These two cases represent hard process modeling problems and encompass 

a large portion of the hard-to-capture elements mentioned above.  By automating the 

process engineering we can capture and V&V the processes.  The two case studies are 

based on real-world processes used by the UCDMO for the development, 

implementation, and C&A of CDS. 

4. Real-world Impact 

We provided feedback to the UCDMO on process errors discovered through the 

case studies, resulting in corresponding changes to the real-world process for requesting, 

developing, implementing, certifying and accrediting cross domain solutions.  This 

demonstrates how the embedded feedback loop in the process modeling approach can 

directly contribute to process engineering and improvement of real-world processes. 

B. RECOMMENDATIONS FOR FUTURE WORK 

More work is needed to further validate our modeling approach.  We have applied 

our approach to two processes in the security analysis and decision-making domain and 

submit that it would improve process-modeling efforts in other domains.  In addition, 

there needs to be additional research to enable the long-term runtime monitoring of an 

executable process model in direct support of the real-world application of the process.  

In other words, it would be desirable to provide the users of the approach with the 

capability to execute process models for sufficiently long periods of time such that the 

modeled processes terminate naturally (i.e., processes that have a definitive end-point or 

product which causes the process to end) or run indefinitely (e.g., safety processes that 

involve continuous checking of health and status of the manual and automated functions 
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of a process-control application).  Future research is needed on the optimal placement and 

use of embedded assertions within a statechart-based formal process model.  Follow-on 

research also needs to examine additional modeling tool capabilities to facilitate the 

modeling of human-in-the-loop processes. 

1. Improving Workflows for Surgical Procedures 

In this research, we apply the modeling approach to partially automated, human-

based, C&A processes.  There are also opportunities in the field of medical workflow 

specifications for further validation of our modeling approach. 

Since 1993, the DoD has transformed health care delivery in its use of 

information technology to automate patient data documentation.  The Department uses an 

enterprise-wide medical and dental clinical information system that generates, maintains, 

and provides 24-hour secure online access to electronic medical records (EMR).  This 

system of EMRs enhances patient safety for more than nine million beneficiaries, with 

“one patient, one record.”  It provides a legible and longitudinal clinical record that 

includes drug interaction alerts, patient allergy notifications, and wellness reminders to 

enhance health care delivery. (Charles, Harmon, and Jordan 2005) 

Under the rubric of the Military Health System (MHS), DoD operates state-of-

the-art hospitals and clinics, battlefield, and forward-deployed temporary medical 

facilities worldwide.  MHS provides care to over 19,000 inpatients and 1.7 million 

outpatients each week (Charles, Harmon, and Jordan 2005).  The EMR is a primary 

enabler for the improvement in safety, effectiveness, and efficiency of healthcare and as a 

fully integrated component of the military healthcare paradigm.  Through the integration 

of Health Information Technology (HIT) such as the EMR, the DoD is searching for 

ways to improve the quality and efficiency of care it provides to members of the military.  

In addition to improving EMRs, the DoD has specified, using natural language and 

simple flowcharts, the process workflows for performing medical procedures.  These 

procedures, such as surgeries, can be performed manually or semi-automatically and may 

involve both human decision-making and robotically controlled elements. 
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Figure 73. Example Surgical Procedure Workflow (From Yu et al. 2011)  

Yu, Varga, Wijesekera, Stavrou, and Singhal are investigating the improvement 

of surgical procedure workflows (example shown in Figure 73) and surgical electronic 

medical records (S-EMR) through the application of use/misuse cases and time-out 

points.  They describe workflows for surgical procedures that incorporate both EMRs and 

more pedestrian means such as paper-based checklists.  They discuss the inclusion of 

time-out points as a means of reducing injury and casualty rates during surgical 

procedures.  Time-out points provide a controlled pause in the medical procedure, 

affording the surgical team time to check a pre-defined condition before proceeding to 

the next step.  They propose the architecture shown in Figure 74 for enforcing time-out 

points in workflows as a means of ensuring the rigorous application of time-out points 

throughout the procedure. (Yu et al. 2011). 
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Figure 74. Time-out Point Enforceable Architecture (From Yu et al. 2011) 

Improving safety and reducing error rates in medical procedures is an important 

area of research to DoD and to the medical community at large.  We propose that future 

researchers use DoD medical workflow specifications to further validate our approach to 

applying computer-aided formal V&V of process workflows.  We also propose that the 

runtime execution monitoring of embedded assertions, used as a requirements-

enforcement mechanism in our modeling approach, could be used as the basis for a Time-

out Point Manager (TPM). 

2. Runtime Execution Monitoring – Long-term Approach 

We demonstrated a process modeling approach that supports V&V of the 

modeled process through runtime execution monitoring and the enforcement of 

embedded assertions.  Further work is needed to support the monitoring and enforcement 

of process requirements throughout a process lifecycle.  We believe the approach 

described in this research could form the basis for an enforcement engine that ensures a 

real-world manifestation of the modeled process adheres to process requirements.  The 

TPM described in the previous section is an example of a requirements enforcement 

mechanism that would operate in conjunction with the real-world execution of a process. 
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3. Full-scale Employment of Embedded Assertions 

We demonstrated the use of several embedded statechart assertions to model and 

enforce process requirements.  We believe that many modeled processes would have a 

large number of stakeholder requirements, translating to a large number of embedded 

assertions in the process model.  Future research needs to further examine full-scale 

employment of embedded assertions to model and enforce all of these process 

requirements.  In a full-scale deployment, it would be important to determine a priori 

whether the enforcement of embedded assertions introduces a performance penalty and if 

so, how much of one.  We did not see any appreciable runtime performance penalties 

when adding statechart assertions to our models; however, it may be the case that 

working with a large number of assertions would deteriorate runtime execution 

monitoring performance. 

4. Validation Using External Assertions 

We explored the use of embedded assertions statecharts as a requirements 

enforcement mechanism on models of partially automated human-based security-related 

processes.  Embedded statecharts assertions, as the name implies, monitor and enforce 

“from the inside” of the modeled process.  This approach was appropriate to our research 

since we modeled both the assertions and process models in the same language, using the 

same toolset. 

Future research should investigate using external assertions and assertion 

repositories as a means of monitoring “from the outside” of the modeled process.  

Drusinky introduced the concepts and provided usage examples of external assertion 

repositories (Drusinsky et al. 2008; Drusinsky 2011, 58–79).  This approach would likely 

enable the use of differing tools, techniques, and languages for the process model and the 

assertions used to enforce requirements on the model. 

5. Additional Modeling Tool Capabilities 

The StateRover modeling tool used in this research satisfied the list of minimum 

desirable attributes detailed in Section III.A.1.  Future research needs to examine 
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continued development of tools to support the modeling of decision-making processes.  

In Section III.C.6.c we discussed data collection and analysis related to runtime execution 

modeling.  It would have been helpful to have a robust, automated data collection and 

reporting mechanism built into the modeling tool to collect data such as the length of 

time for each test run, number of assertions that passed and the number that failed in each 

test run, and the number of model states not visited.  We manually collected this data and 

used it to help with the development and debugging of process models. 
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